Lecture lecture $4 — 09 / 08 / 17$

Prof. David Woodruff
Scribe: Hui Han Chin

High Precision Regession

The Sketch-and-Solve approach to solving the regression problem of $\min _{x}|A x-b|$ has runtime of the form $n n z(A)+(n+d)$ poly (d / ϵ). However, there is a dependence on poly $(1 / \epsilon)$ error term and this is not desirable as it would take very long to get low error solutions. The goal is to remove this dependence and ideally, get machine precision.

We would show a technique of finding x^{\prime} for which $\left|A x^{\prime}-b\right|_{2} \in(1+\epsilon) \min _{x}|A x-b|_{2}$ with high probability but in time $n n z(A)+(n+d) \operatorname{poly}(d) \log (1 / \epsilon)$. The main idea is to sketch and solve to find for a initial crude solution before using gradient descent to improve it. The key insight is that sketching can improve the condition number of A.
Definition. Condition number, κ, of a matrix A

$$
\kappa(A)=\frac{\sup _{|x|_{2}=1}|A x|_{2}}{\inf _{|x|_{2}=1}|A x|_{2}}=\frac{\sigma_{\max }(A)}{\sigma_{\min }(A)}
$$

The condition number estimate the inaccuracy of the approximate solution. A large condition number of A means that a small change in the target vector b will result a large change in the solution vector x. Thus is it desired to have small condition number, also known as a well conditioned problem. Many algorithms' time complexity, such as Precondition Conjugate Gradient, depend on the condition number.

Small QR Decomposition

1. Assume A is invertible. For general A, find the linearly independent columns and proceed.
2. Suppose S is a ϵ_{0} subspace embedding for A, compute $S A$. We use ϵ_{0} to denote the initial solution's error factor as oppose to ϵ, which is the final solution error factor.
3. Find R via QR decomposition such that $S A=Q R^{-1} \Rightarrow S A R=Q$. QR decomposition can be done in poly (d) time with no dependency on ϵ_{0}. Also we needed A to be invertible to ensure that R is invertible.
4. Observe that $\kappa(S A R)=\kappa(Q)=1$ since Q is orthonormal.

Claim 1. $\kappa(A R)=\frac{1+\epsilon_{0}}{1+\epsilon_{0}}$
Proof: For all unit $x,|S A R x|_{2}=|Q x|_{2}=1$ as Q preserves norms. Since S is a subspace embedding, $|S A R x|_{2} \in\left(1 \pm \epsilon_{0}\right)|A R x|_{2}$

$$
\left(1-\epsilon_{0}\right)|A R x|_{2} \leq 1 \leq\left(1+\epsilon_{0}\right)|A R x|_{2} \Rightarrow \kappa(A R)=\frac{1+\epsilon_{0}}{1-\epsilon_{0}}
$$

Gradient Descent to Improve to a Constant Factor Solution

Gradient Descent update rule For a fixed ϵ_{0}, e.g. $1 / 2$, solving for $x_{0}=\min _{x}|S A R x-S b|_{2}$ takes $n n z(A)+\operatorname{poly}(d)$. We would find R as well in the same time. Note that x_{0} is a constant factor approximation of x^{*}. Now apply Gradient Descent to improve x_{0}.

Definition. Update Rule

$$
x_{m+1} \leftarrow x_{m}+R^{T} A^{T}\left(b-A R x_{m}\right)
$$

Want to show at each update step, x_{m} improves by a constant factor.
Let the SVD be of AR be $A R=U \Sigma V^{T}$. Show that the distance to x^{*} decreases.

$$
\begin{aligned}
A R\left(x_{m+1}-x^{*}\right) & =A R\left(x_{m}+R^{T} A^{T}\left(b-A R x_{m}\right)-x^{*}\right) \\
& \left.=A R\left(x_{m}+R^{T} A^{T} A R x^{*}-R^{T} A^{T} A R x_{m}\right)-x^{*}\right) \quad \text { By normal equations } \\
& =\left(A R-A R R^{T} A^{T} A R\right)\left(x_{m}-x^{*}\right) \\
& =\left(U \Sigma V^{T}-\left(U \Sigma V^{T}\right)\left(V \Sigma U^{T}\right)\left(U \Sigma V^{T}\right)\left(x_{m}-x^{*}\right)\right. \\
& =U\left(\Sigma-\Sigma^{3}\right) V^{T}\left(x_{m}-x^{*}\right) \\
\left|A R\left(x_{m+1}-x^{*}\right)\right|_{2} & =\left|U\left(\Sigma-\Sigma^{3}\right) V^{T}\left(x_{m}-x^{*}\right)\right|_{2} \\
& =O\left(\epsilon_{0}\right)\left|U \Sigma V^{T}\left(x_{m}-x^{*}\right)\right|_{2} \quad \text { as } \kappa(A R)=\frac{1+\epsilon_{0}}{1-\epsilon_{0}} \rightarrow \sigma(A R) \leq O(1+\epsilon) \\
& =O\left(\epsilon_{0}\right)\left|A R\left(x_{m}-x^{*}\right)\right|_{2}
\end{aligned}
$$

Thus at each round, the solution improves by a factor of ϵ_{0}. Combining with

$$
\left|A R x_{m}-b\right|_{2}^{2}=\left|A R\left(x_{m}-x^{*}\right)\right|_{2}^{2}+\left|A R x^{*}-b\right|_{2}^{2}=O\left(\left(\epsilon_{0}\right)^{m}\right)\left|A R\left(x_{0}-x^{*}\right)\right|_{2}+\left|A R x^{*}-b\right|_{2}^{2}
$$

since the initial solution is constant ϵ_{0} approximation and each round the solution improves by factor of ϵ_{0}, thus the overall dependency on ϵ is $\log \left(\epsilon^{-} 1\right)$.

Note this results holds with high probability. If the initial sketching $S A$ failed to produce a good conditioner R, as $\kappa(A R)$ would be big, then this procedure would take much longer but it will arrive at the eventual right estimate x^{\prime}.

Leverage Score Sampling

The subspace embedding methods so far are oblivious. For example if we use a CountSketch matrix S to embed A, if A has sparse rows, then $S A$ has sparse rows too, which is not efficient. There is an alternative subspace method based on sampling the "important" rows of the matrix. This is called Leverage Score Sampling. Let $A \in R^{n \times d}=U \Sigma V^{T}$ be a rank-d matrix.

Definition. Leverage Score $l(i)$ of the i th row of A

$$
l(i)=\left|U_{i, *}\right|_{2}^{2}
$$

Observe that if A is orthonormal, then $\sum_{i} l(i)=d$ since it just reordering the sum of squares of the entries in A. Also note that $l(i)$ is independent of the orthonormal basis U of A. Suppose both U, U^{\prime} are both othornormal bases of A.

Claim 2. $\forall i,\left|e_{i} U\right|_{2}^{2}=\left|e_{i} U^{\prime}\right|_{2}^{2}$
Proof: Since both U and U^{\prime} have the same column space and are bases, then there is some change of basis matrix Z such that $U=U^{\prime} Z$. Since U, U^{\prime} are orthonormal, then Z is a rotation matrix meaning it has both orthonormal rows and columns. Then, $\left|e_{i} U\right|_{2}^{2}=\left|e_{i} U^{\prime} Z\right|_{2}^{2}=\left|e_{i} U^{\prime}\right|_{2}^{2}$

Intuitively, the leverage score correspond to the importance of a row to the matrix that we are solving. Sampling according to the leverage score will allow us to pick the important rows. However computing the actual leverage score would require an expansive SVD. The idea is to find another distribution $q(i)$ that approximates the leverage scores $l(i)$. Let $q(i) \geq \frac{\beta l(i)}{d}$, with β as some scaling parameter.

Definition. Approximate Leverage Score Sampling matrix $S=D \Omega^{T}$, where D is a $k \times k$ diagonal rescaling matrix and Ω is a $n \times k$ sampling matrix. For each column j of Ω, D, independently, and with replacement, pick a row index $i \in[n]$ with probability q_{i}. Set $\Omega_{i, j}=1$ and $D_{j, j}=\frac{1}{\sqrt{q_{i} k}}$

Note that both Ω, D can be computed in $O(n d+n+k \log k)$ time.

Leverage Score gives Subspace Embedding

We want to show $S=D \cdot \Omega^{T}$ is a $(1 \pm \epsilon)$ embedding for $|A|$. Taking SVD, $A=U \Sigma V^{T}$, this is equivalent of showing, with high probability,

$$
\forall y,|S U y|_{2}^{2}=(1 \pm \epsilon)|U y|_{2}^{2}=(1 \pm \epsilon)|y|_{2}^{2}, \quad \text { or } \quad\left|U^{T} S^{T} S U-I\right|_{2} \leq \epsilon
$$

To analyze $U^{T} S^{T} S U-I$, we would use Matrix Chernoff Bound.
Definition. Matrix Chernoff Bound. Let X_{1}, \cdots, X_{k} be independent copies of a symmetric random matrix $X \in R^{d \times d}$ with $\mathbb{E}[X]=0,|X|_{2} \leq \gamma,\left|\mathbb{E}\left[X^{T} X\right]\right|_{2} \leq \sigma^{2}$. Let $W=\frac{1}{k} \sum_{j \in[k]} X_{j}$. For any $\epsilon>0$

$$
\operatorname{Pr}\left[|W|_{2}>\epsilon\right] \leq 2 d \cdot \exp \left(-\frac{k \epsilon^{2}}{\sigma^{2}+\gamma \epsilon / 3}\right)
$$

Note that since W is symmetric $|W|_{2}=\sup _{|x|_{2}=1} x^{T} W x$

Do a change of variable to X such that $W=X^{T} X=U^{T} S^{T} S U-I$
Let $i(j)$ denote the index of the row of U sampled in the j th trial.
Let I_{d} be the $d \times d$ Identity matrix and 0_{d} be the $d \times d$ all- 0 matrix.
Let $X_{j}=I_{d}-\frac{U_{i(j)}^{T} U_{i(j)}}{q_{i(j)}}$ and note that X_{j} are independent copies of the symmetric matrix random variable. We have the following properties.

$$
\begin{array}{rlr}
\mathbb{E}\left[X_{j}\right] & =I_{d}-\sum_{i} q_{i}\left(\frac{U_{i}^{T} U_{i}}{q_{i}}\right) & \\
& =I_{d}-\sum_{i}\left(U_{i}^{T} U_{i}\right) & \\
& =I_{d}-I_{d} & \\
& =0_{d} & \\
\left|X_{j}\right|_{2} & \leq\left|I_{d}\right|_{2}+\frac{\left|U_{i(j)}^{T} U_{i(j)}\right|_{2}}{q_{i(j)}} & \text { triangle sampled with } q_{i} \\
& \leq 1+\max _{i} \frac{\left|U_{i}\right|_{2}^{2}}{q_{i}} & \\
& \leq 1+\frac{d}{\beta} & \text { by def of } q_{i}
\end{array}
$$

For 2 matrices A, B, let the Loewner Order $A \leq B$ be such that $x^{T} A x \leq x^{T} B x, \forall x$.

$$
\begin{array}{rlr}
\mathbb{E}\left[X^{T} X\right] & =I_{d}-2 \mathbb{E}\left[\frac{U_{i(j)}^{T} U_{i(j)}}{q_{i(j)}}\right]+\mathbb{E}\left[\frac{\left(U_{i(j)}^{T} U_{i(j)}\right)^{2}}{q_{i(j)}^{2}}\right] & \\
& =2\left(I_{d}-\mathbb{E}\left[\frac{U_{i(j)}^{T} U_{i(j)}}{q_{i(j)}}\right]\right)-I_{d}+\sum_{i} q_{i} \frac{\left(U_{i(j)}^{T} U_{i(j)}\right)^{2}}{q_{i(j)}^{2}} & \\
& \leq 2\left(0_{d}\right)-I_{d}+\left(\frac{d}{\beta}\right) \sum_{i} U_{i}^{T} U_{i} & \text { from } \mathbb{E}\left[X_{j}\right] \\
& \leq\left(\frac{d}{\beta}-1\right) I_{d} & U \text { orthonormal }
\end{array}
$$

Hence we get

$$
\left|\mathbb{E}\left[X^{T} X\right]\right|_{2} \leq \frac{d}{\beta}-1
$$

