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High Precision Regession

The Sketch-and-Solve approach to solving the regression problem of minx |Ax− b| has runtime of
the form nnz(A) + (n+ d)poly(d/ε). However, there is a dependence on poly(1/ε) error term and
this is not desirable as it would take very long to get low error solutions. The goal is to remove this
dependence and ideally, get machine precision.

We would show a technique of finding x′ for which |Ax′ − b|2 ∈ (1 + ε) minx |Ax − b|2 with high
probability but in time nnz(A) + (n+ d)poly(d) log(1/ε). The main idea is to sketch and solve to
find for a initial crude solution before using gradient descent to improve it. The key insight is that
sketching can improve the condition number of A.
Definition. Condition number, κ, of a matrix A

κ(A) =
sup
|x|2=1

|Ax|2

inf
|x|2=1

|Ax|2
= σmax(A)
σmin(A)

The condition number estimate the inaccuracy of the approximate solution. A large condition
number of A means that a small change in the target vector b will result a large change in the
solution vector x. Thus is it desired to have small condition number, also known as a well conditioned
problem. Many algorithms’ time complexity, such as Precondition Conjugate Gradient, depend on
the condition number.

Small QR Decomposition

1. Assume A is invertible. For general A, find the linearly independent columns and proceed.

2. Suppose S is a ε0 subspace embedding for A, compute SA. We use ε0 to denote the initial
solution’s error factor as oppose to ε, which is the final solution error factor.

3. Find R via QR decomposition such that SA = QR−1 ⇒ SAR = Q. QR decomposition can be
done in poly(d) time with no dependency on ε0. Also we needed A to be invertible to ensure
that R is invertible.

4. Observe that κ(SAR) = κ(Q) = 1 since Q is orthonormal.

Claim 1. κ(AR) = 1+ε0
1+ε0

Proof: For all unit x, |SARx|2 = |Qx|2 = 1 as Q preserves norms. Since S is a subspace embedding,
|SARx|2 ∈ (1± ε0)|ARx|2

(1− ε0)|ARx|2 ≤ 1 ≤ (1 + ε0)|ARx|2 ⇒ κ(AR) = 1 + ε0
1− ε0
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Gradient Descent to Improve to a Constant Factor Solution

Gradient Descent update rule For a fixed ε0, e.g. 1/2, solving for x0 = minx |SARx− Sb|2 takes
nnz(A) + poly(d). We would find R as well in the same time. Note that x0 is a constant factor
approximation of x∗. Now apply Gradient Descent to improve x0.

Definition. Update Rule
xm+1 ← xm +RTAT (b−ARxm)

Want to show at each update step, xm improves by a constant factor.
Let the SVD be of AR be AR = UΣV T . Show that the distance to x∗ decreases.

AR(xm+1 − x∗) = AR(xm +RTAT (b−ARxm)− x∗)
= AR(xm +RTATARx∗ −RTATARxm)− x∗) By normal equations
= (AR−ARRTATAR)(xm − x∗)
= (UΣV T − (UΣV T )(V ΣUT )(UΣV T )(xm − x∗)
= U(Σ− Σ3)V T (xm − x∗)

|AR(xm+1 − x∗)|2 = |U(Σ− Σ3)V T (xm − x∗)|2

= O(ε0)|UΣV T (xm − x∗)|2 as κ(AR) = 1 + ε0
1− ε0

→ σ(AR) ≤ O(1 + ε)

= O(ε0)|AR(xm − x∗)|2

Thus at each round, the solution improves by a factor of ε0. Combining with

|ARxm − b|22 = |AR(xm − x∗)|22 + |ARx∗ − b|22 = O((ε0)m)|AR(x0 − x∗)|2 + |ARx∗ − b|22

since the initial solution is constant ε0 approximation and each round the solution improves by
factor of ε0, thus the overall dependency on ε is log(ε−1).

Note this results holds with high probability. If the initial sketching SA failed to produce a good
conditioner R, as κ(AR) would be big, then this procedure would take much longer but it will arrive
at the eventual right estimate x′.
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Leverage Score Sampling

The subspace embedding methods so far are oblivious. For example if we use a CountSketch matrix
S to embed A, if A has sparse rows, then SA has sparse rows too, which is not efficient. There is an
alternative subspace method based on sampling the "important" rows of the matrix. This is called
Leverage Score Sampling. Let A ∈ Rn×d = UΣV T be a rank-d matrix.

Definition. Leverage Score l(i) of the ith row of A

l(i) = |Ui,∗|22

Observe that if A is orthonormal, then
∑
i l(i) = d since it just reordering the sum of squares of the

entries in A. Also note that l(i) is independent of the orthonormal basis U of A. Suppose both
U,U ′ are both othornormal bases of A.

Claim 2. ∀i, |eiU |22 = |eiU ′|22
Proof: Since both U and U ′ have the same column space and are bases, then there is some change
of basis matrix Z such that U = U ′Z. Since U,U ′ are orthonormal, then Z is a rotation matrix
meaning it has both orthonormal rows and columns. Then, |eiU |22 = |eiU ′Z|22 = |eiU ′|22
Intuitively, the leverage score correspond to the importance of a row to the matrix that we are
solving. Sampling according to the leverage score will allow us to pick the important rows. However
computing the actual leverage score would require an expansive SVD. The idea is to find another
distribution q(i) that approximates the leverage scores l(i). Let q(i) ≥ βl(i)

d , with β as some scaling
parameter.

Definition. Approximate Leverage Score Sampling matrix S = DΩT , where D is a k × k diagonal
rescaling matrix and Ω is a n× k sampling matrix.For each column j of Ω, D, independently, and
with replacement, pick a row index i ∈ [n] with probability qi. Set Ωi,j = 1 and Dj,j = 1√

qik

Note that both Ω, D can be computed in O(nd+ n+ k log k) time.

Leverage Score gives Subspace Embedding

We want to show S = D · ΩT is a (1 ± ε) embedding for |A|. Taking SVD, A = UΣV T , this is
equivalent of showing, with high probability,

∀y, |SUy|22 = (1± ε)|Uy|22 = (1± ε)|y|22, or |UTSTSU − I|2 ≤ ε

To analyze UTSTSU − I, we would use Matrix Chernoff Bound.

Definition. Matrix Chernoff Bound. Let X1, · · · , Xk be independent copies of a symmetric random
matrix X ∈ Rd×d with E [X] = 0, |X|2 ≤ γ, |E

[
XTX

]
|2 ≤ σ2. Let W = 1

k

∑
j∈[k]Xj . For any ε > 0

Pr
[
|W |2 > ε

]
≤ 2d · exp(− kε2

σ2 + γε/3)

Note that since W is symmetric |W |2 = sup
|x|2=1

xTWx
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Do a change of variable to X such that W = XTX = UTSTSU − I
Let i(j) denote the index of the row of U sampled in the jth trial.
Let Id be the d× d Identity matrix and 0d be the d× d all-0 matrix.
Let Xj = Id −

UT
i(j)Ui(j)
qi(j)

and note that Xj are independent copies of the symmetric matrix random
variable. We have the following properties.

E [Xj ] = Id −
∑
i

qi

(
UTi Ui
qi

)
ith row sampled with qi

= Id −
∑
i

(UTi Ui)

= Id − Id U orthonormal
= 0d

|Xj |2 ≤ |Id|2 +
|UTi(j)Ui(j)|2

qi(j)
triangle ineq

≤ 1 + max
i

|Ui|22
qi

≤ 1 + d

β
by def of qi

For 2 matrices A,B, let the Loewner Order A ≤ B be such that xTAx ≤ xTBx, ∀x.

E
[
XTX

]
= Id − 2E

[
UTi(j)Ui(j)

qi(j)

]
+ E

[
(UTi(j)Ui(j))

2

q2
i(j)

]

= 2(Id − E
[
UTi(j)Ui(j)

qi(j)

]
)− Id +

∑
i

qi
(UTi(j)Ui(j))

2

q2
i(j)

≤ 2(0d)− Id + ( d
β

)
∑
i

UTi Ui from E [Xj ]

≤ ( d
β
− 1)Id U orthonormal

Hence we get
|E
[
XTX

]
|2 ≤

d

β
− 1
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