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1 CountSketch Satisfies the JL Property

Recall that our CountSketch matrix is a sparse k×n matrix, in which each column contains a single
randomly chosen nonzero entry which is ±1. Every CountSketch matrix can be described by two
functions:

1. h : [n]→ [k] is a 2-wise independent hash function. For the ith column, h(i) is the row with a
nonzero.

2. σ : [n]→ {−1,+1} is a 4-wise independent hash function. For the ith column, σ(i) is the sign
of the entry in that column.

In the previous lecture, we were in the middle of showing that the CountSketch matrix is a subspace
embedding. We already saw the approximate matrix product result, under the assumption that
CountSketch satisfied the (ε, δ, l)-JL moment property for some l > 2. It only remains to show that
the CountSketch matrix satisfies this property for l = 2 to finish the proof.

Proposition 1. The distribution on CountSketch matrices S ∈ Rk×n has the JL property with
l = 2. That is, for all x ∈ Rn with |x|2 = 1,

ES
[∣∣∣|Sx|22 − 1

∣∣∣2] ≤ ε2δ.

Proof. Let us first compute the term E[|Sx|22]. We will use the notation that δ(E) = 1 if the event
E holds and δ(E) = 0 otherwise.
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E[|Sx|22] = E

 k∑
j=1

(Sj∗ · x)2


= E

 k∑
j=1

(
n∑
i=1

δ(h(i) = j)σixi

)2


= E

 k∑
j=1

n∑
i1=1

n∑
i2=1

δ(h(i1) = j)δ(h(i2) = j)σi1σi2xi1xi2


=

k∑
j=1

n∑
i1=1

n∑
i2=1

E[δ(h(i1) = j)δ(h(i2) = j)σi1σi2 ]xi1xi2

=
k∑
j=1

n∑
i=1

E[δ(h(i) = j)2]x2
i

=
k∑
j=1

1
k

n∑
i=1

x2
i

= |x|22.

In the 5th line, we used pairwise independence of σ, which implies all terms where i1, i2 are distinct
vanish since E[σi] = 0, and that σ2

i = 1.

Next let us compute E[|Sx|42]. Following from the 3rd line of the previous calculation,

E[|Sx|42] = E[(|Sx|22)2]

=
k∑

j1,j2

n∑
i1,i2,i3,i4

E[δ(h(i1) = j1)δ(h(i2) = j1)δ(h(i3) = j2)δ(h(i4) = j2)σi1σi2σi3σi4 ]xi1xi2xi3xi4

By 4-wise independence of σ, if any of the indices {i1, i2, i3, i4} is distinct, that term in the sum
vanishes. There are 4 cases:

1. i1 = i2 = i3 = i4: Since there is only one nonzero in each column, this implies j1 = j2 for
nonzero terms. The contribution to the sum is

k∑
j=1

n∑
i=1

Pr[h(i) = j]x4
i =

k∑
j=1

1
k

n∑
i=1

x4
i = |x|44.

2. i1 = i2, i3 = i4, i1 6= i3: Using pairwise independence of h, the contribution to the sum is
k∑

j1,j2

n∑
i1 6=i3

Pr[h(i1) = j1∧h(i3) = j2]x2
i1x

2
i3 =

k∑
j1,j2

1
k2

n∑
i1 6=i3

x2
i1x

2
i3 =

n∑
i1,i3

x2
i1x

2
i3−

n∑
i1=i3

x4
i1 = |x|42−|x|44.

3. i1 = i3, i2 = i4, i1 6= i2: Necessarily, j1 = j2, and by pairwise independence of h, the
contribution to the sum is at most

k∑
j

n∑
i1 6=i2

Pr[h(i1) = j ∧ h(i2) = j]x2
i1x

2
i2 = 1

k

n∑
i1 6=i2

x2
i1x

2
i2 ≤

1
k

n∑
i1,i2

x2
i1x

2
i2 = 1

k
|x|42.
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4. i1 = i4, i2 = i3, i1 6= i2: Identical to case 3, contributing at most 1
k |x|

4
2.

In total, we have E[|Sx|42] ≤ (1 + 2
k )|x|42 = 1 + 2

k .

Finally, we can bound the quantity

E[(|Sx|22 − 1)2] = E[|Sx|42]− 2E[|Sx|22] + 1 ≤ 1 + 2
k
− 2 + 1 ≤ 2

k
≤ ε2δ

if we set k ≥ 2
ε2δ .

�

2 Affine Embeddings

Consider the problem

min
X
|AX −B|2F (1)

where A : n × d, B : n ×m, where d is small but m may be large. We can solve the problem by
solving the linear regression problem for each column of B. If we want to use sketching however, we
cannot directly apply our subspace embeddings; previously we used a matrix S that preserved the
column space of A joined with a column vector b, which was at most a d+ 1 dimensional subspace,
but here B has many columns.

Let us try to show the desired bound |SAX − SB|F = (1± ε)|AX −B|F , and see what properties
of S we need for the proof to go through. As usual, we can assume wlog that A has orthonormal
columns. Let B∗ = AX∗ − B, where X∗ is the optimum in (1). By the normal equations, each
column of B∗ is orthogonal to the column space of A, so

ATB∗ = 0 (2)
|AX −B|2F = |A(X −X∗)|2F + |B∗|2F . (3)

Let us show that |S(AX −B)|2F − |SB∗|2F ∈ |AX −B|2F − |B∗|2F ± 2ε|AX −B|2F :

|S(AX −B)|2F − |SB∗|2F
= |SA(X −X∗) + S(AX∗ −B)|2F − |SB∗|2F
= |SA(X −X∗)|2F + 2 Tr((X −X∗)TATSTSB∗) (|C +D|2F = |C|2F + |D|2F + 2 Tr(CTD))
∈ |SA(X −X∗)|2F ± 2|X −X∗|F |ATSTSB∗|F (|Tr(CD)| ≤ |C|F |D|F )
∈ |SA(X −X∗)|2F ± 2ε|X −X∗|F |B∗|F (if approx matrix product and (2))
∈ |A(X −X∗)|2F ± ε(|A(X −X∗)|2F + 2|X −X∗|F |B∗|F ) (if subspace embedding for A)
∈ |A(X −X∗)|2F ± ε(|A(X −X∗)|F + |B∗|F )2 (a2 + 2ab ≤ (a+ b)2)
∈ |A(X −X∗)|2F ± 2ε(|A(X −X∗)|2F + |B∗|2F ) (AM-GM inequality)
∈ |AX −B|2F − |B∗|2F ± 2ε|A(X −B)|2F (using (3) twice)

3



Let us say that S preserves the Frobenius norm of a fixed matrix A if |SA|2F = (1± ε)|A|2F with
some constant probability. A fact from the homework is that the CountSketch matrix preserves the
Frobenius norm of any fixed A. If S preserves the Frobenius norm of B∗, then

|S(AX −B)|2F = |AX −B|2F − |B∗|2F + |SB∗|2F ± 2ε|AX −B|2F
= (1 + 2ε)|AX −B|2F + ε|B∗|2F
= (1 + 3ε)|AX −B|2F

which is what we wanted to show.

In summary, S is an affine embedding if the following three properties hold:

1. S is a subspace embedding for columns of A.

2. S has the approximate matrix product result.

3. S preserves the Frobenius norm.
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