Lecture 2-2 — September 14, 2017
Prof. David Woodruff
Scribe: Taisuke Yasuda

1 Sketching with the CountSketch matrix

Note that sketching with Subsampled Randomized Hadamard Transform matrices is not optimal for sparse matrices, since its runtime is $O\left(\left(n d \log \left(\frac{d \log n}{\varepsilon}\right)\right)\right.$ which depends on $n d$, the size of the whole matrix. We introduce a new sketch matrix, the CountSketch matrix but we want dependence only on $\operatorname{nnz}(\mathbf{A})$, the number of nonzero entries of \mathbf{A}. We define a $k \times n$ matrix \mathbf{S}, for $k=O\left(d^{2} / \varepsilon^{2}\right)$. Our matrix \mathbf{S} is very sparse: for every column, we choose a single randomly chosen nonzero entry, which takes value ± 1 with equal probability. Note then that we may compute $\mathbf{S} \cdot \mathbf{A}$ in time proportional to the number of nonzero entries of \mathbf{A}.

Remark 1. There is a tradeoff between the number of nonzero entries you choose in \mathbf{S} and the dependence of k on d, e.g. if you increase the number of nonzero entries of \mathbf{S} then you can get $k=O\left(d^{1.1} / \varepsilon\right)$ or something like this.

Theorem 1. The CountSketch matrix is a subspace embedding.
Proof. We again assume that \mathbf{A} is orthonormal. We first show that $\|\mathbf{S A x}\|_{2}=1 \pm \varepsilon$ for all unit vectors \mathbf{x}. It suffices to show that

$$
\left\|\mathbf{A}^{T} \mathbf{S}^{T} \mathbf{S A}-\mathbf{I}_{d}\right\|_{2} \leq\left\|\mathbf{A}^{T} \mathbf{S}^{T} \mathbf{S A}-\mathbf{I}_{d}\right\|_{F} \leq \varepsilon
$$

since the Frobenius norm upper bounds the operator norm. To prove this, we will show that the CountSketch matrix satisfies a property known as the JL-property and that this property implies an inequality that is equivalent to the one above.
Definition (Johnson-Lindenstrauss Property). A distribution on matrices $\mathbf{S} \in \mathbb{R}^{k \times n}$ satisfies the $(\varepsilon, \delta, \ell)$-JL moment property if for all $\mathbf{x} \in \mathbb{R}^{n}$ with $\|\mathbf{x}\|_{2}=1$,

$$
\underset{\mathbf{S}}{\mathbb{E}}\left|\|\mathbf{S x}\|_{2}^{2}-1\right|^{\ell} \leq \varepsilon^{\ell} \cdot \delta
$$

where the expectation is taken over the distribution over the matrices.
Lemma 1 (Kane, Nelson). Fix \mathbf{C}, \mathbf{D} matrices with the right dimensions, $\mathbf{S} \in \mathbb{R}^{k \times d}$ a distribution over matrices satisfying the JL property, and fix δ. Then

$$
\mathbb{P}\left[\left\|\mathbf{C S}^{T} \mathbf{S D}-\mathbf{C D}\right\|_{F}^{2} \leq \frac{6}{\delta \cdot k}\|\mathbf{C}\|_{F}^{2}\|\mathbf{D}\|_{F}^{2}\right] \geq 1-\delta
$$

Proof. We first prove Minkowski's inequality for random scalar variables, which we will need in the proof.

Definition (p-norm of Random Variables). For a random scalar variable X, we define its p-norm to be

$$
|X|_{p}:=\left(\mathbb{E}\left[|X|^{p}\right]\right)^{1 / p} .
$$

Remark 2. We will also often consider the p-norm of the Frobenius norm of a random matrix \mathbf{T}, which is

$$
\left|\|\mathbf{T}\|_{F}\right|_{p}=\left(\mathbb{E}\left[\|\mathbf{T}\|_{F}^{p}\right]\right)^{1 / p}
$$

The word "norm" in the p-norm is justified for $p \geq 1$, and the triangle inequality in this case is known as Minkowski's inequality.
Lemma 2 (Minkowski's Inequality). Let $p \geq 1$. Then

$$
|X+Y|_{p} \leq|X|_{p}+|Y|_{p}
$$

Proof. We first show that if $|X|_{p},|Y|_{p}$ are finite, then so is $|X+Y|_{p}$. Note that $f(x)=x^{p}$ is convex for $p \geq 1$ and $x \geq 0$, so for any fixed x, y, we have that

$$
\left|\frac{1}{2} x+\frac{1}{2} y\right|^{p} \leq\left(\frac{1}{2}|x|+\frac{1}{2}|y|\right)^{p} \leq \frac{1}{2}|x|^{p}+\frac{1}{2}|y|^{p}
$$

so

$$
|x+y|^{p} \leq 2^{p-1}\left(|x|^{p}+|y|^{p}\right)
$$

and thus integrating the above inequality over the probability measure (taking the expectation) gives

$$
|X+Y|_{p}^{p} \leq 2^{p-1}\left(|X|_{p}^{p}+|Y|_{p}^{p}\right)
$$

and thus $|X+Y|_{p}^{p}$ is finite. Now note that

$$
\begin{aligned}
|X+Y|_{p}^{p} & =\int|x+y|^{p} d \mu=\int|x+y||x+y|^{p-1} d \mu \\
& \leq \int(|x|+|y|)|x+y|^{p-1} d \mu \\
& =\int|x||x+y|^{p-1} d \mu+\int|y||x+y|^{p-1} d \mu
\end{aligned}
$$

Applying Hölder's inequality with $\frac{1}{p}+\frac{p-1}{p}=1$ applied to each term, we bound the above by

$$
\left(\left(\int|x|^{p} d \mu\right)^{1 / p}+\left(\int|y|^{p} d \mu\right)^{1 / p}\right)\left(\int|x+y|^{(p-1)(p /(p-1))} d \mu\right)^{(p-1) / p}=\left(|X|_{p}+|Y|_{p}\right)|X+Y|_{p}^{p-1} .
$$

If $|X+Y|_{p}=0$, then the inequality is trivially true and otherwise, since we showed that $|X+Y|_{p}$ is finite, we may divide through by $|X+Y|_{p}^{p-1}$ to conclude.
Theorem 2. Let $\mathbf{S} \in \mathbb{R}^{k \times n}$ be a distribution of matrices that satisfies the $(\varepsilon, \delta, \ell)$-JL property with $\varepsilon, \delta \in(0,1 / 2)$ and $\ell \geq 2$. Then for matrices \mathbf{A}, \mathbf{B} with n rows,

$$
\underset{\mathbf{S}}{\mathbb{P}}\left[\left\|\mathbf{A}^{T} \mathbf{S}^{T} \mathbf{S B}\right\|_{F} \geq 3 \varepsilon\|\mathbf{A}\|_{F}\|\mathbf{B}\|_{F}\right] \leq \delta .
$$

Proof. Let x, y be unit vectors. Then

$$
\begin{aligned}
|\langle\mathbf{S x}, \mathbf{S y}\rangle-\langle\mathbf{x}, \mathbf{y}\rangle|_{\ell} & =\frac{1}{2}\left|\left(\|\mathbf{S x}\|_{2}^{2}-1\right)+\left(\|\mathbf{S y}\|_{2}^{2}-1\right)-\left(\|\mathbf{S}(\mathbf{x}-\mathbf{y})\|_{2}^{2}-\|\mathbf{x}-\mathbf{y}\|_{2}^{2}\right)\right|_{\ell} \\
& \leq \frac{1}{2}\left(\left|\|\mathbf{S x}\|_{2}^{2}-1\right|_{\ell}+\left|\|\mathbf{S y}\|_{2}^{2}-1\right|_{\ell}-\left|\|\mathbf{S}(\mathbf{x}-\mathbf{y})\|_{2}^{2}-\|\mathbf{x}-\mathbf{y}\|_{2}^{2}\right|_{\ell}\right) \\
& \leq \frac{1}{2}\left(\varepsilon \delta^{1 / \ell}+\varepsilon \delta^{1 / \ell}+\|\mathbf{x}-\mathbf{y}\|_{2}^{2} \varepsilon \delta^{1 / \ell}\right) \leq \frac{1}{2}\left(\varepsilon \delta^{1 / \ell}+\varepsilon \delta^{1 / \ell}+2^{2} \varepsilon \delta^{1 / \ell}\right) \\
& \leq 3 \varepsilon \delta^{1 / \ell} .
\end{aligned}
$$

Now by linearity, we conclude that for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{d}$,

$$
\frac{|\langle\mathbf{S x}, \mathbf{S y}\rangle-\langle\mathbf{x}, \mathbf{y}\rangle|_{\ell}}{\|\mathbf{x}\|_{2}\|\mathbf{y}\|_{2}} \leq 3 \varepsilon \delta^{1 / \ell}
$$

Now let \mathbf{A} have columns $\mathbf{A}_{1}, \ldots, \mathbf{A}_{d}$ and let B have columns $\mathbf{B}_{1}, \ldots, \mathbf{B}_{e}$. Then define \mathbf{X} entrywise by defining for each $i \in[d], j \in[e]$,

$$
\mathbf{X}_{i, j}:=\frac{\left\langle\mathbf{S A}_{i}, \mathbf{S B}_{j}\right\rangle-\left\langle\mathbf{A}_{i}, \mathbf{B}_{j}\right\rangle}{\left\|\mathbf{A}_{i}\right\|_{2}\left\|\mathbf{B}_{j}\right\|_{2}} .
$$

Then,

$$
\begin{aligned}
\left|\left\|\mathbf{A}^{T} \mathbf{S}^{T} \mathbf{S B}-\mathbf{A}^{T} \mathbf{B}\right\|_{F}^{2}\right|_{\ell / 2} & =\left|\sum_{i=1}^{d} \sum_{j=1}^{e}\|\mathbf{A}\|_{2}^{2}\|\mathbf{B}\|_{2}^{2} \mathbf{X}_{i, j}^{2}\right|_{\ell / 2} \leq \sum_{i=1}^{d} \sum_{j=1}^{e}\|\mathbf{A}\|_{2}^{2}\|\mathbf{B}\|_{2}^{2}\left|\mathbf{X}_{i, j}^{2}\right|_{\ell / 2} \\
& =\sum_{i=1}^{d} \sum_{j=1}^{e}\|\mathbf{A}\|_{2}^{2}\|\mathbf{B}\|_{2}^{2}\left|\mathbf{X}_{i, j}\right|_{\ell}^{2} \leq\left(3 \varepsilon \delta^{1 / \ell}\right)^{2} \sum_{i=1}^{d} \sum_{j=1}^{e}\|\mathbf{A}\|_{2}^{2}\|\mathbf{B}\|_{2}^{2} \\
& =\left(3 \varepsilon \delta^{1 / \ell}\right)^{2}\|\mathbf{A}\|_{F}^{2}\|\mathbf{B}\|_{F}^{2} .
\end{aligned}
$$

Finally, since we have

$$
\mathbb{E}\left[\left\|\mathbf{A}^{T} \mathbf{S}^{T} \mathbf{S B}-\mathbf{A}^{T} \mathbf{B}\right\|_{F}^{\ell}\right]=\left|\left\|\mathbf{A}^{T} \mathbf{S}^{T} \mathbf{S B}-\mathbf{A}^{T} \mathbf{B}\right\|_{F}^{2}\right|_{\ell / 2}^{\ell / 2},
$$

Markov's inequality allows us to conclude by

$$
\begin{aligned}
\mathbb{P}\left[\left\|\mathbf{A}^{T} \mathbf{S}^{T} \mathbf{S B}-\mathbf{A}^{T} \mathbf{B}\right\|_{F}>3 \varepsilon\|\mathbf{A}\|_{F}\|\mathbf{B}\|_{F}\right] & =\mathbb{P}\left[\left\|\mathbf{A}^{T} \mathbf{S}^{T} \mathbf{S B}-\mathbf{A}^{T} \mathbf{B}\right\|_{F}^{\ell}>\left(3 \varepsilon\|\mathbf{A}\|_{F}\|\mathbf{B}\|_{F}\right)^{\ell}\right] \\
& \leq \frac{1}{\left(3 \varepsilon\|\mathbf{A}\|_{F}\|\mathbf{B}\|_{F}\right)^{\ell}} \mathbb{E}\left[\left\|\mathbf{A}^{T} \mathbf{S}^{T} \mathbf{S B}-\mathbf{A}^{T} \mathbf{B}\right\|_{F}^{\ell}\right] \\
& \leq \frac{1}{\left(3 \varepsilon\|\mathbf{A}\|_{F}\|\mathbf{B}\|_{F}\right)^{\ell}}\left(\left(3 \varepsilon \delta^{1 / \ell}\right)^{2}\|\mathbf{A}\|_{F}^{2}\|\mathbf{B}\|_{F}^{2}\right)^{\ell / 2} \\
& \leq \frac{\delta\left(3 \varepsilon\|\mathbf{A}\|_{F}\|\mathbf{B}\|_{F}\right)^{\ell}}{\left(3 \varepsilon\|\mathbf{A}\|_{F}\|\mathbf{B}\|_{F}\right)^{\ell}}=\delta .
\end{aligned}
$$

With the lemma by Kane and Nelson in hand, it remains to show that CountSketch satisfies the JL property. Note that $\|\mathbf{A}\|_{F}=\left\|\mathbf{A}^{T}\right\|_{F}=d$ since \mathbf{A} was assumed to be orthonormal. Then, after proving the CountSketch is JL, we may let SA be a $k \times d$ matrix with $k=6 d^{2} /\left(\delta \varepsilon^{2}\right), \mathbf{C}:=\mathbf{A}^{T}$, and D :=A to conclude that

$$
\mathbb{P}\left[\left\|\mathbf{A}^{T} \mathbf{S}^{T} \mathbf{S A}-\mathbf{I}_{d}\right\|_{F} \leq \varepsilon\right] \geq 1-\delta
$$

as desired.
Theorem 3. The CountSketch matrix satisfies the $(\varepsilon, \delta, 2)$-JL property.
Proof. Next lecture.

