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1 Sketching with the CountSketch matrix

Note that sketching with Subsampled Randomized Hadamard Transform matrices is not optimal for
sparse matrices, since its runtime is O

(
(nd log

(
d log n

ε

))
which depends on nd, the size of the whole

matrix. We introduce a new sketch matrix, the CountSketch matrix but we want dependence only
on nnz(A), the number of nonzero entries of A. We define a k× n matrix S, for k = O(d2/ε2). Our
matrix S is very sparse: for every column, we choose a single randomly chosen nonzero entry, which
takes value ±1 with equal probability. Note then that we may compute S ·A in time proportional
to the number of nonzero entries of A.

Remark 1. There is a tradeoff between the number of nonzero entries you choose in S and the
dependence of k on d, e.g. if you increase the number of nonzero entries of S then you can get
k = O(d1.1/ε) or something like this.

Theorem 1. The CountSketch matrix is a subspace embedding.

Proof. We again assume that A is orthonormal. We first show that ‖SAx‖2 = 1 ± ε for all unit
vectors x. It suffices to show that∥∥∥AT ST SA− Id

∥∥∥
2
≤
∥∥∥AT ST SA− Id

∥∥∥
F
≤ ε

since the Frobenius norm upper bounds the operator norm. To prove this, we will show that the
CountSketch matrix satisfies a property known as the JL-property and that this property implies an
inequality that is equivalent to the one above.

Definition (Johnson-Lindenstrauss Property). A distribution on matrices S ∈ Rk×n satisfies the
(ε, δ, `)-JL moment property if for all x ∈ Rn with ‖x‖2 = 1,

E
S

∣∣∣‖Sx‖22 − 1
∣∣∣` ≤ ε` · δ

where the expectation is taken over the distribution over the matrices.

Lemma 1 (Kane, Nelson). Fix C,D matrices with the right dimensions, S ∈ Rk×d a distribution
over matrices satisfying the JL property, and fix δ. Then

P
[∥∥∥CST SD−CD

∥∥∥2

F
≤ 6
δ · k

‖C‖2F ‖D‖
2
F

]
≥ 1− δ.

Proof. We first prove Minkowski’s inequality for random scalar variables, which we will need in the
proof.
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Definition (p-norm of Random Variables). For a random scalar variable X, we define its p-norm
to be

|X|p := (E [|X|p])1/p .

Remark 2. We will also often consider the p-norm of the Frobenius norm of a random matrix T,
which is

|‖T‖F |p = (E [‖T‖pF ])1/p
.

The word “norm” in the p-norm is justified for p ≥ 1, and the triangle inequality in this case is
known as Minkowski’s inequality.

Lemma 2 (Minkowski’s Inequality). Let p ≥ 1. Then

|X + Y |p ≤ |X|p + |Y |p .

Proof. We first show that if |X|p , |Y |p are finite, then so is |X + Y |p. Note that f(x) = xp is convex
for p ≥ 1 and x ≥ 0, so for any fixed x, y, we have that∣∣∣∣12x+ 1

2y
∣∣∣∣p ≤ (1

2 |x|+
1
2 |y|

)p

≤ 1
2 |x|

p + 1
2 |y|

p

so
|x+ y|p ≤ 2p−1 (|x|p + |y|p)

and thus integrating the above inequality over the probability measure (taking the expectation)
gives

|X + Y |pp ≤ 2p−1
(
|X|pp + |Y |pp

)
and thus |X + Y |pp is finite. Now note that

|X + Y |pp =
∫
|x+ y|p dµ =

∫
|x+ y| |x+ y|p−1 dµ

≤
∫

(|x|+ |y|) |x+ y|p−1 dµ

=
∫
|x| |x+ y|p−1 dµ+

∫
|y| |x+ y|p−1 dµ.

Applying Hölder’s inequality with 1
p + p−1

p = 1 applied to each term, we bound the above by((∫
|x|p dµ

)1/p

+
(∫
|y|p dµ

)1/p
)(∫

|x+ y|(p−1)(p/(p−1)) dµ

)(p−1)/p

=
(
|X|p + |Y |p

)
|X + Y |p−1

p .

If |X + Y |p = 0, then the inequality is trivially true and otherwise, since we showed that |X + Y |p
is finite, we may divide through by |X + Y |p−1

p to conclude. �

Theorem 2. Let S ∈ Rk×n be a distribution of matrices that satisfies the (ε, δ, `)-JL property with
ε, δ ∈ (0, 1/2) and ` ≥ 2. Then for matrices A,B with n rows,

P
S

[∥∥∥AT ST SB
∥∥∥

F
≥ 3ε ‖A‖F ‖B‖F

]
≤ δ.
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Proof. Let x,y be unit vectors. Then

|〈Sx,Sy〉 − 〈x,y〉|` = 1
2

∣∣∣(‖Sx‖22 − 1
)

+
(
‖Sy‖22 − 1

)
−
(
‖S(x− y)‖22 − ‖x− y‖22

)∣∣∣
`

≤ 1
2
(∣∣∣‖Sx‖22 − 1

∣∣∣
`

+
∣∣∣‖Sy‖22 − 1

∣∣∣
`
−
∣∣∣‖S(x− y)‖22 − ‖x− y‖22

∣∣∣
`

)
≤ 1

2
(
εδ1/` + εδ1/` + ‖x− y‖22 εδ

1/`
)
≤ 1

2
(
εδ1/` + εδ1/` + 22εδ1/`

)
≤ 3εδ1/`.

Now by linearity, we conclude that for all x,y ∈ Rd,

|〈Sx,Sy〉 − 〈x,y〉|`
‖x‖2 ‖y‖2

≤ 3εδ1/`.

Now let A have columns A1, . . . ,Ad and let B have columns B1, . . . ,Be. Then define X entrywise
by defining for each i ∈ [d], j ∈ [e],

Xi,j := 〈SAi,SBj〉 − 〈Ai,Bj〉
‖Ai‖2 ‖Bj‖2

.

Then,

∣∣∣∣∥∥∥AT ST SB−AT B
∥∥∥2

F

∣∣∣∣
`/2

=

∣∣∣∣∣∣
d∑

i=1

e∑
j=1
‖A‖22 ‖B‖

2
2 X2

i,j

∣∣∣∣∣∣
`/2

≤
d∑

i=1

e∑
j=1
‖A‖22 ‖B‖

2
2

∣∣∣X2
i,j

∣∣∣
`/2

=
d∑

i=1

e∑
j=1
‖A‖22 ‖B‖

2
2 |Xi,j |2` ≤

(
3εδ1/`

)2 d∑
i=1

e∑
j=1
‖A‖22 ‖B‖

2
2

=
(
3εδ1/`

)2
‖A‖2F ‖B‖

2
F .

Finally, since we have

E
[∥∥∥AT ST SB−AT B

∥∥∥`

F

]
=
∣∣∣∣∥∥∥AT ST SB−AT B

∥∥∥2

F

∣∣∣∣`/2

`/2
,

Markov’s inequality allows us to conclude by

P
[∥∥∥AT ST SB−AT B

∥∥∥
F
> 3ε ‖A‖F ‖B‖F

]
= P

[∥∥∥AT ST SB−AT B
∥∥∥`

F
> (3ε ‖A‖F ‖B‖F )`

]
≤ 1

(3ε ‖A‖F ‖B‖F )`
E
[∥∥∥AT ST SB−AT B

∥∥∥`

F

]

≤ 1
(3ε ‖A‖F ‖B‖F )`

((
3εδ1/`

)2
‖A‖2F ‖B‖

2
F

)`/2

≤ δ (3ε ‖A‖F ‖B‖F )`

(3ε ‖A‖F ‖B‖F )`
= δ.

�
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With the lemma by Kane and Nelson in hand, it remains to show that CountSketch satisfies the
JL property. Note that ‖A‖F =

∥∥∥AT
∥∥∥

F
= d since A was assumed to be orthonormal. Then, after

proving the CountSketch is JL, we may let SA be a k× d matrix with k = 6d2/(δε2), C := AT , and
D := A to conclude that

P
[∥∥∥AT ST SA− Id

∥∥∥
F
≤ ε

]
≥ 1− δ

as desired.

Theorem 3. The CountSketch matrix satisfies the (ε, δ, 2)-JL property.

Proof. Next lecture. �

�
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