CS 15-859: Algorithms for Big Data Fall 2017

Lecture 2-2 — September 14, 2017
Prof. David Woodruff Scribe: Taisuke Yasuda

1 Sketching with the CountSketch matrix

Note that sketching with Subsampled Randomized Hadamard Transform matrices is not optimal for
sparse matrices, since its runtime is O ((nd log (dk’%» which depends on nd, the size of the whole
matrix. We introduce a new sketch matrix, the CountSketch matrix but we want dependence only
on nnz(A), the number of nonzero entries of A. We define a k x n matrix S, for k = O(d?/e?). Our
matrix S is very sparse: for every column, we choose a single randomly chosen nonzero entry, which
takes value +1 with equal probability. Note then that we may compute S - A in time proportional

to the number of nonzero entries of A.

Remark 1. There is a tradeoff between the number of nonzero entries you choose in S and the
dependence of k on d, e.g. if you increase the number of nonzero entries of S then you can get
k = O(d"!/¢) or something like this.

Theorem 1. The CountSketch matriz is a subspace embedding.

Proof. We again assume that A is orthonormal. We first show that ||[SAx|, = 1 £ ¢ for all unit
vectors x. It suffices to show that

HATSTSA - IdH2 < HATSTSA - IdHF <e

since the Frobenius norm upper bounds the operator norm. To prove this, we will show that the
CountSketch matrix satisfies a property known as the JL-property and that this property implies an
inequality that is equivalent to the one above.

Definition (Johnson-Lindenstrauss Property). A distribution on matrices S € R¥*" satisfies the
(,0,€)-JL moment property if for all x € R"™ with x|, =1,

E [l - 1| <es

where the expectation is taken over the distribution over the matrices.

Lemma 1 (Kane, Nelson). Fiz C,D matrices with the right dimensions, S € R**¢ q distribution
over matrices satisfying the JL property, and fix 5. Then

P MCSTSD ~cp| < % el ||D|y;} >1-4,

Proof. We first prove Minkowski’s inequality for random scalar variables, which we will need in the
proof.



Definition (p-norm of Random Variables). For a random scalar variable X, we define its p-norm
to be

X1, = (B[ X))

p°
Remark 2. We will also often consider the p-norm of the Frobenius norm of a random matrix T,
which is
1
1Tl ], = (B [IT|5)7 .

The word “norm” in the p-norm is justified for p > 1, and the triangle inequality in this case is
known as Minkowski’s inequality.

Lemma 2 (Minkowski’s Inequality). Let p > 1. Then

X+ Y], < |X|,+ Y],

Proof. We first show that if | X[, , [Y[, are finite, then so is [X + Y[ ,. Note that f(z) = 2" is convex
for p > 1 and x > 0, so for any fixed x,y, we have that

1 1 P
_ _ _ p p
‘2x+2y‘ ( 2| + - !yl> 2lw! !y\

SO
x4 yP <2071 (|2l + |y[P)

and thus integrating the above inequality over the probability measure (taking the expectation)
gives
X + VP <ot (|Xy§ + !Yli)
and thus [X + Y[} is finite. Now note that
XY= [lot+ol du= [lo+ylla+ ol du
< [ (ol + Iy o+ yP™" dp

= [lello+yP ™ dp+ [lollo+ o dp

Applying Holder’s inequality with & 5t p L — 1 applied to each term, we bound the above by

1/p 1/p (p-1)/p
((/mpwo ([ 1ol an) )(/m+ywlﬁﬂpmtm) = (1), + IY]) X+ Y

If | X + Y]p = 0, then the inequality is trivially true and otherwise, since we showed that | X + Y|p
is finite, we may divide through by | X + Y\g_l to conclude. |

Theorem 2. Let S € RF*™ be q distribution of matrices that satisfies the (e, 6, £)-JL property with
g,0 € (0,1/2) and ¢ > 2. Then for matrices A, B with n rows,

p[|aTs"sB|, > 5 |Allp [Bll] <o



Proof. Let x,y be unit vectors. Then

(5%,8y) — eyl = 5 |(I8x12 1) + (I8y12 1) — (186~ I3~ Ix— I3)],
<5 (1Sl 1], + [IsylZ 1], f]HSxf I3 = lx = yl3],)
%( Y4 e 4 | x — sz 651/4) < 5 (561/€+551/£+22551/£)
< 3e6/¢,

Now by linearity, we conclude that for all x,y € R%,

(8%, 8Y) = (<, ¥ly _ o si/e
Il Tyl

Now let A have columns Ai,..., Ay and let B have columns By, ..., B.. Then define X entrywise
by defining for each i € [d], j € [e],

e Al 1B,

Then,

<AL B %3,
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Finally, since we have

P 5 /2
E HATSTSB - ATBH } ‘HATSTSB ATBH "
Markov’s inequality allows us to conclude by
[HATSTSB ATBH > 3¢ | Al Bl | =P [HATSTSB ATBH Be||Allp 1B )"

< ! 7
(3 |All# [Bll)

<  ((3e0) 1Al 1B )
BellAllrBlF)

J (3¢ |Allg HBHF)
(3€HAHF 1Bl )"

E HATSTSB - ATBHi




With the lemma by Kane and Nelson in hand, it remains to show that CountSketch satisfies the
JL property. Note that ||A|p = HATHF = d since A was assumed to be orthonormal. Then, after

proving the CountSketch is JL, we may let SA be a k x d matrix with k = 6d%/(d¢?), C := AT, and
D := A to conclude that

P [HATSTSA - IdHF < s] >1-4
as desired.

Theorem 3. The CountSketch matriz satisfies the (e,9,2)-JL property.

Proof. Next lecture. |
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