CS 15-859: Algorithms for Big Data

Fall 2017

Lecture 2-2 — September 14, 2017

Prof. David Woodruff

1 Sketching with the CountSketch matrix

Note that sketching with Subsampled Randomized Hadamard Transform matrices is not optimal for sparse matrices, since its runtime is $O\left(\left(nd\log\left(\frac{d\log n}{\varepsilon}\right)\right)\right)$ which depends on nd, the size of the whole matrix. We introduce a new sketch matrix, the CountSketch matrix but we want dependence only on nnz(**A**), the number of nonzero entries of **A**. We define a $k \times n$ matrix **S**, for $k = O(d^2/\varepsilon^2)$. Our matrix **S** is very sparse: for every column, we choose a single randomly chosen nonzero entry, which takes value ± 1 with equal probability. Note then that we may compute **S** · **A** in time proportional to the number of nonzero entries of **A**.

Remark 1. There is a tradeoff between the number of nonzero entries you choose in **S** and the dependence of k on d, e.g. if you increase the number of nonzero entries of **S** then you can get $k = O(d^{1,1}/\varepsilon)$ or something like this.

Theorem 1. The CountSketch matrix is a subspace embedding.

Proof. We again assume that **A** is orthonormal. We first show that $\|\mathbf{SAx}\|_2 = 1 \pm \varepsilon$ for all unit vectors **x**. It suffices to show that

$$\left\|\mathbf{A}^T\mathbf{S}^T\mathbf{S}\mathbf{A} - \mathbf{I}_d\right\|_2 \leq \left\|\mathbf{A}^T\mathbf{S}^T\mathbf{S}\mathbf{A} - \mathbf{I}_d\right\|_F \leq \varepsilon$$

since the Frobenius norm upper bounds the operator norm. To prove this, we will show that the CountSketch matrix satisfies a property known as the JL-property and that this property implies an inequality that is equivalent to the one above.

Definition (Johnson-Lindenstrauss Property). A distribution on matrices $\mathbf{S} \in \mathbb{R}^{k \times n}$ satisfies the $(\varepsilon, \delta, \ell)$ -JL moment property if for all $\mathbf{x} \in \mathbb{R}^n$ with $\|\mathbf{x}\|_2 = 1$,

$$\mathbb{E}_{\mathbf{S}} \left| \|\mathbf{S}\mathbf{x}\|_{2}^{2} - 1 \right|^{\ell} \le \varepsilon^{\ell} \cdot \delta$$

where the expectation is taken over the distribution over the matrices.

Lemma 1 (Kane, Nelson). Fix \mathbf{C}, \mathbf{D} matrices with the right dimensions, $\mathbf{S} \in \mathbb{R}^{k \times d}$ a distribution over matrices satisfying the JL property, and fix δ . Then

$$\mathbb{P}\left[\left\|\mathbf{C}\mathbf{S}^{T}\mathbf{S}\mathbf{D}-\mathbf{C}\mathbf{D}\right\|_{F}^{2} \leq \frac{6}{\delta \cdot k} \left\|\mathbf{C}\right\|_{F}^{2} \left\|\mathbf{D}\right\|_{F}^{2}\right] \geq 1-\delta.$$

Proof. We first prove Minkowski's inequality for random scalar variables, which we will need in the proof.

Definition (*p*-norm of Random Variables). For a random scalar variable X, we define its *p*-norm to be

$$|X|_p := (\mathbb{E}[|X|^p])^{1/p}$$

Remark 2. We will also often consider the *p*-norm of the Frobenius norm of a random matrix **T**, which is

$$|||\mathbf{T}||_{F}|_{p} = (\mathbb{E}[||\mathbf{T}||_{F}^{p}])^{1/p}.$$

The word "norm" in the *p*-norm is justified for $p \ge 1$, and the triangle inequality in this case is known as Minkowski's inequality.

Lemma 2 (Minkowski's Inequality). Let $p \ge 1$. Then

$$|X+Y|_p \le |X|_p + |Y|_p$$
.

Proof. We first show that if $|X|_p$, $|Y|_p$ are finite, then so is $|X + Y|_p$. Note that $f(x) = x^p$ is convex for $p \ge 1$ and $x \ge 0$, so for any fixed x, y, we have that

$$\left|\frac{1}{2}x + \frac{1}{2}y\right|^p \le \left(\frac{1}{2}|x| + \frac{1}{2}|y|\right)^p \le \frac{1}{2}|x|^p + \frac{1}{2}|y|^p$$

 \mathbf{SO}

$$|x+y|^p \le 2^{p-1} (|x|^p + |y|^p)$$

and thus integrating the above inequality over the probability measure (taking the expectation) gives

$$|X + Y|_p^p \le 2^{p-1} \left(|X|_p^p + |Y|_p^p \right)$$

and thus $|X + Y|_p^p$ is finite. Now note that

$$\begin{aligned} |X+Y|_{p}^{p} &= \int |x+y|^{p} \ d\mu = \int |x+y| \ |x+y|^{p-1} \ d\mu \\ &\leq \int (|x|+|y|) \ |x+y|^{p-1} \ d\mu \\ &= \int |x| \ |x+y|^{p-1} \ d\mu + \int |y| \ |x+y|^{p-1} \ d\mu. \end{aligned}$$

Applying Hölder's inequality with $\frac{1}{p} + \frac{p-1}{p} = 1$ applied to each term, we bound the above by

$$\left(\left(\int |x|^p \ d\mu\right)^{1/p} + \left(\int |y|^p \ d\mu\right)^{1/p}\right) \left(\int |x+y|^{(p-1)(p/(p-1))} \ d\mu\right)^{(p-1)/p} = \left(|X|_p + |Y|_p\right) |X+Y|_p^{p-1} + \left(\int |y|^p \ d\mu\right)^{1/p} = \left(|X|_p + |Y|_p\right) |X+Y|_p^{p-1} + \left(\int |y|^p \ d\mu\right)^{1/p} = \left(|X|_p + |Y|_p\right) |X+Y|_p^{p-1} + \left(\int |y|^p \ d\mu\right)^{1/p} = \left(|X|_p + |Y|_p\right) |X+Y|_p^{p-1} + \left(\int |y|^p \ d\mu\right)^{1/p} = \left(|X|_p + |Y|_p\right) |X+Y|_p^{p-1} + \left(\int |y|^p \ d\mu\right)^{1/p} = \left(|X|_p + |Y|_p\right) |X+Y|_p^{p-1} + \left(\int |y|^p \ d\mu\right)^{1/p} = \left(|X|_p + |Y|_p\right) |X+Y|_p^{p-1} + \left(\int |y|^p \ d\mu\right)^{1/p} = \left(|X|_p + |Y|_p\right) |X+Y|_p^{p-1} + \left(\int |y|^p \ d\mu\right)^{1/p} = \left(|X|_p + |Y|_p\right) |X+Y|_p^{p-1} + \left(\int |y|^p \ d\mu\right)^{1/p} = \left(|X|_p + |Y|_p\right) |X+Y|_p^{p-1} + \left(\int |y|^p \ d\mu\right)^{1/p} = \left(|X|_p + |Y|_p\right) |X+Y|_p^{p-1} + \left(\int |y|^p \ d\mu\right)^{1/p} = \left(|X|_p + |Y|_p\right) |X+Y|_p^{p-1} + \left(\int |y|^p \ d\mu\right)^{1/p} = \left(|X|_p + |Y|_p\right) |X+Y|_p^{p-1} + \left(\int |y|^p \ d\mu\right)^{1/p} = \left(|X|_p + |Y|_p\right) |X+Y|_p^{p-1} + \left(\int |y|^p \ d\mu\right)^{1/p} = \left(|X|_p + |Y|_p\right) |X+Y|_p^{p-1} + \left(\int |y|^p \ d\mu\right)^{1/p} = \left(|X|_p + |Y|_p\right) |X+Y|_p^{p-1} + \left(\int |y|^p \ d\mu\right)^{1/p} = \left(|X|_p + |Y|_p\right) |X+Y|_p^{p-1} + \left(\int |y|^p \ d\mu\right)^{1/p} = \left(|X|_p + |Y|_p\right) |X+Y|_p^{p-1} + \left(\int |y|^p \ d\mu\right)^{1/p} = \left(|X|_p + |Y|_p\right) |X+Y|_p^{p-1} + \left(\int |y|^p \ d\mu\right)^{1/p} = \left(|X|_p + |Y|_p\right) |X+Y|_p^{p-1} + \left(\int |y|^p \ d\mu\right)^{1/p} = \left(|X|_p + |Y|_p\right) |X+Y|_p^{p-1} + \left(\int |y|^p \ d\mu\right)^{1/p} = \left(|X|_p + |Y|_p\right) |X+Y|_p^{p-1} + \left(\int |y|^p \ d\mu\right)^{1/p} = \left(|X|_p + |Y|_p\right) |X+Y|_p^{p-1} + \left(\int |y|^p \ d\mu\right)^{1/p} = \left(|X|_p + |Y|_p\right) |X+Y|_p^{p-1} + \left(|X|_p + |$$

If $|X + Y|_p = 0$, then the inequality is trivially true and otherwise, since we showed that $|X + Y|_p$ is finite, we may divide through by $|X + Y|_p^{p-1}$ to conclude.

Theorem 2. Let $\mathbf{S} \in \mathbb{R}^{k \times n}$ be a distribution of matrices that satisfies the $(\varepsilon, \delta, \ell)$ -JL property with $\varepsilon, \delta \in (0, 1/2)$ and $\ell \geq 2$. Then for matrices \mathbf{A}, \mathbf{B} with n rows,

$$\mathbb{P}_{\mathbf{S}}\left[\left\|\mathbf{A}^{T}\mathbf{S}^{T}\mathbf{S}\mathbf{B}\right\|_{F} \ge 3\varepsilon \left\|\mathbf{A}\right\|_{F} \left\|\mathbf{B}\right\|_{F}\right] \le \delta.$$

Proof. Let \mathbf{x}, \mathbf{y} be unit vectors. Then

$$\begin{split} |\langle \mathbf{S}\mathbf{x}, \mathbf{S}\mathbf{y} \rangle - \langle \mathbf{x}, \mathbf{y} \rangle|_{\ell} &= \frac{1}{2} \left| \left(\|\mathbf{S}\mathbf{x}\|_{2}^{2} - 1 \right) + \left(\|\mathbf{S}\mathbf{y}\|_{2}^{2} - 1 \right) - \left(\|\mathbf{S}(\mathbf{x} - \mathbf{y})\|_{2}^{2} - \|\mathbf{x} - \mathbf{y}\|_{2}^{2} \right) \right|_{\ell} \\ &\leq \frac{1}{2} \left(\left| \|\mathbf{S}\mathbf{x}\|_{2}^{2} - 1 \right|_{\ell} + \left| \|\mathbf{S}\mathbf{y}\|_{2}^{2} - 1 \right|_{\ell} - \left| \|\mathbf{S}(\mathbf{x} - \mathbf{y})\|_{2}^{2} - \|\mathbf{x} - \mathbf{y}\|_{2}^{2} \right|_{\ell} \right) \\ &\leq \frac{1}{2} \left(\varepsilon \delta^{1/\ell} + \varepsilon \delta^{1/\ell} + \|\mathbf{x} - \mathbf{y}\|_{2}^{2} \varepsilon \delta^{1/\ell} \right) \leq \frac{1}{2} \left(\varepsilon \delta^{1/\ell} + \varepsilon \delta^{1/\ell} + 2^{2} \varepsilon \delta^{1/\ell} \right) \\ &\leq 3 \varepsilon \delta^{1/\ell}. \end{split}$$

Now by linearity, we conclude that for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^d$,

$$\frac{|\langle \mathbf{S}\mathbf{x}, \mathbf{S}\mathbf{y} \rangle - \langle \mathbf{x}, \mathbf{y} \rangle|_{\ell}}{\|\mathbf{x}\|_2 \|\mathbf{y}\|_2} \le 3\varepsilon \delta^{1/\ell}.$$

Now let **A** have columns $\mathbf{A}_1, \ldots, \mathbf{A}_d$ and let *B* have columns $\mathbf{B}_1, \ldots, \mathbf{B}_e$. Then define **X** entrywise by defining for each $i \in [d], j \in [e]$,

$$\mathbf{X}_{i,j} := rac{\langle \mathbf{S} \mathbf{A}_i, \mathbf{S} \mathbf{B}_j
angle - \langle \mathbf{A}_i, \mathbf{B}_j
angle}{\|\mathbf{A}_i\|_2 \, \|\mathbf{B}_j\|_2}$$

Then,

$$\begin{split} \left| \left\| \mathbf{A}^T \mathbf{S}^T \mathbf{S} \mathbf{B} - \mathbf{A}^T \mathbf{B} \right\|_F^2 \right|_{\ell/2} &= \left| \sum_{i=1}^d \sum_{j=1}^e \|\mathbf{A}\|_2^2 \|\mathbf{B}\|_2^2 \mathbf{X}_{i,j}^2 \right|_{\ell/2} \leq \sum_{i=1}^d \sum_{j=1}^e \|\mathbf{A}\|_2^2 \|\mathbf{B}\|_2^2 \left| \mathbf{X}_{i,j}^2 \right|_{\ell/2} \\ &= \sum_{i=1}^d \sum_{j=1}^e \|\mathbf{A}\|_2^2 \|\mathbf{B}\|_2^2 |\mathbf{X}_{i,j}|_\ell^2 \leq \left(3\varepsilon \delta^{1/\ell} \right)^2 \sum_{i=1}^d \sum_{j=1}^e \|\mathbf{A}\|_2^2 \|\mathbf{B}\|_2^2 \\ &= \left(3\varepsilon \delta^{1/\ell} \right)^2 \|\mathbf{A}\|_F^2 \|\mathbf{B}\|_F^2 \,. \end{split}$$

Finally, since we have

$$\mathbb{E}\left[\left\|\mathbf{A}^{T}\mathbf{S}^{T}\mathbf{S}\mathbf{B}-\mathbf{A}^{T}\mathbf{B}\right\|_{F}^{\ell}\right] = \left\|\left\|\mathbf{A}^{T}\mathbf{S}^{T}\mathbf{S}\mathbf{B}-\mathbf{A}^{T}\mathbf{B}\right\|_{F}^{2}\right|_{\ell/2}^{\ell/2},$$

Markov's inequality allows us to conclude by

$$\begin{split} \mathbb{P}\left[\left\|\mathbf{A}^{T}\mathbf{S}^{T}\mathbf{S}\mathbf{B}-\mathbf{A}^{T}\mathbf{B}\right\|_{F} > 3\varepsilon \left\|\mathbf{A}\right\|_{F} \left\|\mathbf{B}\right\|_{F}\right] &= \mathbb{P}\left[\left\|\mathbf{A}^{T}\mathbf{S}^{T}\mathbf{S}\mathbf{B}-\mathbf{A}^{T}\mathbf{B}\right\|_{F}^{\ell} > (3\varepsilon \left\|\mathbf{A}\right\|_{F} \left\|\mathbf{B}\right\|_{F})^{\ell}\right] \\ &\leq \frac{1}{(3\varepsilon \left\|\mathbf{A}\right\|_{F} \left\|\mathbf{B}\right\|_{F})^{\ell}} \mathbb{E}\left[\left\|\mathbf{A}^{T}\mathbf{S}^{T}\mathbf{S}\mathbf{B}-\mathbf{A}^{T}\mathbf{B}\right\|_{F}^{\ell}\right] \\ &\leq \frac{1}{(3\varepsilon \left\|\mathbf{A}\right\|_{F} \left\|\mathbf{B}\right\|_{F})^{\ell}} \left(\left(3\varepsilon\delta^{1/\ell}\right)^{2} \left\|\mathbf{A}\right\|_{F}^{2} \left\|\mathbf{B}\right\|_{F}^{2}\right)^{\ell/2} \\ &\leq \frac{\delta (3\varepsilon \left\|\mathbf{A}\right\|_{F} \left\|\mathbf{B}\right\|_{F})^{\ell}}{(3\varepsilon \left\|\mathbf{A}\right\|_{F} \left\|\mathbf{B}\right\|_{F})^{\ell}} = \delta. \end{split}$$

With the lemma by Kane and Nelson in hand, it remains to show that CountSketch satisfies the JL property. Note that $\|\mathbf{A}\|_F = \|\mathbf{A}^T\|_F = d$ since \mathbf{A} was assumed to be orthonormal. Then, after proving the CountSketch is JL, we may let \mathbf{SA} be a $k \times d$ matrix with $k = 6d^2/(\delta \varepsilon^2)$, $\mathbf{C} := \mathbf{A}^T$, and $\mathbf{D} := \mathbf{A}$ to conclude that

$$\mathbb{P}\left[\left\|\mathbf{A}^{T}\mathbf{S}^{T}\mathbf{S}\mathbf{A}-\mathbf{I}_{d}\right\|_{F}\leq\varepsilon\right]\geq1-\delta$$

as desired.

Theorem 3. The CountSketch matrix satisfies the $(\varepsilon, \delta, 2)$ -JL property.

Proof. Next lecture.

4