| CS 15-859: Algorithms for Big Data | Fall 2017 |
| :---: | :---: |
| Lecture 2-1 — 14th September , 2017 |  |
| Prof. David Woodruff | Scribe: Nimrah Shakeel |

Choosing the right sketching matrix S
Our goal is to choose a suitable sketching matrix $S$ so that $S^{*} A$ can be computed in $\mathrm{O}(\mathrm{ndlog}(\mathrm{n})$ ) time. To this end, we choose a matrix $\mathrm{S}=\mathrm{P}^{*} \mathrm{H}^{*} \mathrm{D}$, such that P is a diagonal matrix with $\pm 1$ on the diagonals, H is a Hadamard matrix and P is a matrix that chooses a (small) subset of rows of $\mathrm{P}^{*} \mathrm{H}$. We can view P as having one 1 per row, where the column of each 1 indicates a row of $\mathrm{P}^{*} \mathrm{H}$ which is to be selected.

We are assuming that the columns of A are orthonormal. We have to show that such a sketching matrix satisfies the subspace embedding property i.e. for any unit vector x , the distortion due to transformation by S is bounded by $\pm \epsilon$.

Claim 1. $|S A X|_{2}{ }^{2}=|P H D A x|_{2}^{2}=1 \pm \epsilon$
Proof: Since $H D$ is a rotation matrix, we can say that multiplication by it does not change the norm

$$
|H D A|_{2}^{2}=|A x|_{2}^{2}=1, \forall x
$$

Let $y=A x$
We will make use of the flattening lemma.
Lemma 1. For any particular y,

$$
\operatorname{Pr}\left[|H D Y|_{\infty} \geq C \sqrt{\frac{\operatorname{log(\frac {nd}{\delta })}}{n}}\right]<\frac{\delta}{2 d}
$$

Proof: Let $C>0$ be a constant. We will first show that for any $i \in[n]$, we can say that $\left[\operatorname{Pr}\left[|H D Y|_{\infty}>C \sqrt{\frac{\operatorname{log(\frac {nd}{\delta })}}{n}}\right]<\frac{\delta}{2 n d}\right.$
Afterwards, we can apply a union bound over all $i$ 's.
Notice that any particular ith row of HDY can be written as

$$
\left|(H D Y)_{i}\right|=\sum_{j} H_{i j} D_{j j} y_{j}
$$

Recall the Azuma-Hoeffding lemma:
Lemma 2. : For zero mean bounded random variable $Z_{j}$ such that $Z_{j} \leq \beta_{j}$ with probability 1 $\left[\operatorname{Pr}\left[\left|\sum_{j} Z_{j}\right|>t\right] \leq 2 e^{-\left(\frac{t^{2}}{2 \sum_{j}\left(\beta_{j}\right)^{2}}\right)}\right.$ Here, let $Z_{j}=H_{i j} D_{j j} y_{j}$.
Then $Z_{j}$ 's are bounded random variables with 0 mean and $\left|Z_{j}\right| \leq \frac{\left|y_{j}\right|}{\sqrt{n}}=\beta_{j}$ with probability 1 , for all $j$.

Consequently, we have $\sum_{j}\left(\beta_{j}\right)^{2}=\frac{1}{n}$, since $y$ has unit norm.
This gives us

$$
\operatorname{Pr}\left[\left|\sum_{j} Z_{j}\right|>C \sqrt{\frac{\log \frac{n d}{\delta}}{n}}\right] \leq 2 e^{-\frac{C^{2} \log \frac{n d}{\delta}}{2}} \leq \frac{\delta}{2 n d}
$$

for a suitable $C$.

Consequences of the flattening lemma:
Remember that A has orthonormal columns, and so has HDA.
The flattening lemma implies that for any particular $i \in d$

$$
\left|H D A e_{i}\right|_{\infty} \leq C \sqrt{\frac{\log \frac{n d}{\delta}}{n}}
$$

with probability $1-\frac{\delta}{2 d}$
This gives us that $\left|e_{j} H D A e_{i}\right|_{\infty} \geq C \sqrt{\frac{\log \frac{n d}{\delta}}{n}}$ with probability $1-\frac{\delta}{2}$, for all $i, j$.
Further, we can say that $\left|e_{j} H D A\right|_{2} \leq C \sqrt{\frac{d \log \frac{n d}{\delta}}{n}}$, for all $j$.

Matrix Chernoff Bound

Let $X_{1}, \ldots, X_{s}$ be independent copies of a symmetric random matrix $X \in R^{\text {dxd }}$ with $E[X]=0,|X|_{2} \leq \gamma$ and $\left|E\left[X^{T} X\right]\right|_{2} \leq \Sigma^{2}$
Let $W=\frac{1}{s} \sum_{i \in[S]} X_{i}$
For any $\epsilon>0$

$$
\operatorname{Pr}\left[|W|_{2}>\epsilon\right] \leq 2 d . e^{-s \epsilon^{2} \Sigma^{2}+\frac{\gamma \epsilon}{3}}
$$

where $|W|_{2}$ denotes the spectral norm such that

$$
|W|_{2}=\sup \frac{|W x|_{2}}{|x|_{2}}
$$

Let $V=H D A$, then $V$ is a matrix with orthonormal columns.
Suppose $P$ in $S=P H D$ samples s rows uniformly with replacement. If row $i$ is sampled in the $j$ th sample, $P_{j i}=\sqrt{\frac{n}{s}}$, and is 0 otherwise.
Let $Y_{i}$ be the ith sampled row of $V=H D A$
Let $X_{i}=I_{d}-n . Y_{i}^{T} Y_{i}$
Then

$$
\begin{gathered}
E\left[X_{i}\right]=I_{d}-n \cdot \sum_{j}\left(\frac{1}{n}\right) V_{j}^{T} V_{j}=I_{d}-V^{T} V=0^{d x d} \\
\left|X_{i}\right|_{2} \leq\left|I_{d}\right|_{2}+n \cdot \max \left|e_{j} H D A\right|_{2}^{2}=1+n \cdot C^{2} \log \frac{n d}{\delta} \cdot \frac{d}{n}=\Theta\left(d \log \frac{n d}{\delta}\right)
\end{gathered}
$$

$$
\begin{aligned}
& E\left[X^{T} X+I_{d}\right]=I_{d}+I_{d}-2 n E\left[Y_{i}^{T}\right]+n^{2} E\left[Y_{i}^{T} Y_{i} Y_{i}^{T} Y_{i}\right] \\
& =2 I_{d}-2 I_{d}+n^{2} \sum_{i}\left(\frac{1}{n}\right) \cdot v_{i}^{T} v_{i} v_{i}^{T} v_{i}=n \sum_{i} v_{i}^{T} v_{i} \cdot\left|v_{i}\right|_{2}^{2}
\end{aligned}
$$

Let us define

$$
Z=n \sum_{i} v_{i}^{T} v_{i} C^{2} \log \left(\frac{n d}{\delta}\right) \cdot \frac{d}{n}=C^{2} d \log \left(\frac{n d}{\delta}\right) I_{d}
$$

Note that $E\left[X^{T} X+I_{d}\right]$ and $Z$ are real symmetric, with non-negative eigenvalues.
Claim 2. : For all vectors y, we have

$$
y^{T} E\left[X^{T} X+I_{d}\right] y \leq y^{T} Z y
$$

Proof:

$$
y_{T} E\left[X^{T} X+I_{d}\right] y=n \sum_{i} y^{T} v_{i}^{T} v_{i} y\left|v_{i}\right|_{2}^{2}=n \sum_{i} v_{i}, y\left|v_{i}\right|_{2} 2
$$

Also,

$$
y_{T} Z y=n \sum_{i} y^{T} v_{i}^{T} v_{i} y C^{2} \log \left(\frac{n d}{\delta}\right) \cdot \frac{d}{n}=d \sum_{i} v_{i} y C^{2} \log \left(\frac{n d}{\delta}\right)
$$

Hence

$$
\begin{gathered}
\left|E\left[X^{T} X\right]\right|_{2} \leq\left|E\left[X^{T} X\right]+I_{d}\right|_{2}+\left|I_{d}\right|_{2}=\left|\exp X^{T} x+I_{d}\right|_{2}+1 \\
\leq|Z|_{2}+1 \leq C^{2} d \log \left(\frac{n d}{\delta}\right)+1 \\
\left|E\left[X^{T} X\right]\right|_{2}=\omega\left(d \log \left(\frac{n d}{\delta}\right)\right)
\end{gathered}
$$

Recall the Matrix Chernoff bound which says that
For $X_{1}, \ldots, X_{s}$ which are independent copies of a symmetric random matrix $X \in R^{d x d}$ with $E[X]=0$, $|X|_{2} \leq \gamma$ and $\left|E\left[X^{T} X\right]\right|_{2} \leq \sigma^{2}$
Let $W=\frac{1}{s} \sum_{i \in[S]} X_{i}$.
For any $\epsilon>0$,

$$
\operatorname{Pr}\left[|W|_{2}>\epsilon\right] \leq 2 d . e^{-s \epsilon^{2} /\left(\sigma^{2}+\frac{\gamma \epsilon}{3}\right)}
$$

Then $\operatorname{Pr}\left[\left|I_{d}-(P H D A)^{T}(P H D A)\right|_{2}>\epsilon\right] \leq 2 d . e^{-s \epsilon^{2} /\left(\Theta\left(d \log \left(\frac{n d}{\delta}\right)\right)\right)}$
If we set $s=d \log \left(\frac{n d}{\delta}\right) \frac{\log \left(\frac{n d}{\delta}\right)}{\epsilon^{2}}$ to make this probability less than $\frac{\delta}{2}$
This implies that for every unit vector $\mathrm{x},\left|1-|P H D A x|_{2}{ }^{2}\right|=\left|x^{T} x-x^{T}(P H D A)^{T}(P H D A) x\right| \leq \epsilon$, so $|P H D A x|_{2}{ }^{2} \in 1 \pm \epsilon$ for all unit vectors x .
Thus if we consider the column span of A adjoined with b , we can solve the regression problem in $\omega(n d \log n)+\operatorname{poly}\left(\frac{d \log n}{\epsilon}\right)$, which is nearly optimal in matrix dimensions i.e. when $n \gg d$.

