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Choosing the right sketching matrix S

Our goal is to choose a suitable sketching matrix S so that S*A can be computed in O(ndlog(n))
time. To this end, we choose a matrix S = P*H*D, such that P is a diagonal matrix with ±1 on the
diagonals, H is a Hadamard matrix and P is a matrix that chooses a (small) subset of rows of P*H.
We can view P as having one 1 per row, where the column of each 1 indicates a row of P*H which
is to be selected.

We are assuming that the columns of A are orthonormal. We have to show that such a sketching
matrix satisfies the subspace embedding property i.e. for any unit vector x, the distortion due to
transformation by S is bounded by ±ε.

Claim 1. | SAX |22 = | PHDAx |22 = 1± ε
Proof: Since HD is a rotation matrix, we can say that multiplication by it does not change the
norm

| HDA |22 = | Ax |22 = 1, ∀x

Let y = Ax
We will make use of the flattening lemma.

Lemma 1. For any particular y,

Pr[| HDY |∞≥ C

√
log(ndδ )
n

] < δ

2d

Proof: Let C > 0 be a constant. We will first show that for any i ∈ [n], we can say that

[Pr[| HDY |∞> C

√
log(nd

δ
)

n ] < δ
2nd

Afterwards, we can apply a union bound over all i’s.
Notice that any particular ith row of HDY can be written as

| (HDY )i |=
∑
j

HijDjjyj

Recall the Azuma-Hoeffding lemma:

Lemma 2. : For zero mean bounded random variable Zj such that Zj ≤ βj with probability 1

[Pr[|
∑
j Zj |> t] ≤ 2e

−( t2

2
∑

j
(βj)2 )

Here , let Zj = HijDjjyj.
Then Zj’s are bounded random variables with 0 mean and | Zj |≤ |yj |√n = βj with probability 1, for all
j.
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Consequently, we have
∑
j(βj)2 = 1

n , since y has unit norm.
This gives us

Pr[|
∑
j

Zj |> C

√
log nd

δ

n
] ≤ 2e−

C2 log nd
δ

2 ≤ δ

2nd

for a suitable C.

Consequences of the flattening lemma:

Remember that A has orthonormal columns ,and so has HDA.
The flattening lemma implies that for any particular i ∈ d

| HDAei |∞≤ C

√
log nd

δ

n

with probability 1− δ
2d

This gives us that | ejHDAei |∞≥ C
√

log nd
δ

n with probability 1− δ
2 , for all i,j.

Further, we can say that | ejHDA |2≤ C
√

d log nd
δ

n , for all j.

Matrix Chernoff Bound

Let X1, ..., Xs be independent copies of a symmetric random matrix X ∈ Rdxd with
E[X] = 0, | X |2≤ γ and | E[XTX] |2≤ Σ2

Let W = 1
s

∑
i∈[S]Xi

For any ε > 0
Pr[|W |2 > ε] ≤ 2d.e−sε2 Σ2+ γε
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where |W |2 denotes the spectral norm such that

|W |2 = sup
|Wx|2
|x|2

Let V = HDA , then V is a matrix with orthonormal columns.
Suppose P in S = PHD samples s rows uniformly with replacement. If row i is sampled in the jth
sample, Pji =

√
n
s , and is 0 otherwise.

Let Yi be the ith sampled row of V = HDA
Let Xi = Id − n.YiTYi
Then

E[Xi] = Id − n.
∑
j

( 1
n

)VjTVj = Id − V TV = 0dxd

|Xi|2 ≤ |Id|2 + n.max|ejHDA|22 = 1 + n.C2 log nd
δ
.
d

n
= Θ(d log nd

δ
)
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E[XTX + Id] = Id + Id − 2nE[YiT ] + n2E[YiTYiYiTYi]

= 2Id − 2Id + n2 ∑
i

( 1
n

).viT viviT vi = n
∑
i

vi
T vi.|vi|22

Let us define
Z = n

∑
i

vi
T viC

2 log(nd
δ

). d
n

= C2d log(nd
δ

)Id

Note that E[XTX + Id] and Z are real symmetric , with non-negative eigenvalues.

Claim 2. : For all vectors y, we have

yTE[XTX + Id]y ≤ yTZy

Proof:
yTE[XTX + Id]y = n

∑
i

yT vi
T viy|vi|22 = n

∑
i

vi, y|vi|22

Also,
yTZy = n

∑
i

yT vi
T viyC

2 log(nd
δ

). d
n

= d
∑
i

viyC
2 log(nd

δ
)

Hence
|E[XTX]|2 ≤ |E[XTX] + Id|2+ | Id |2=| expXTx+ Id |2 +1

≤ |Z|2 + 1 ≤ C2d log(nd
δ

) + 1

|E[XTX]|2 = ω(d log(nd
δ

))

Recall the Matrix Chernoff bound which says that
For X1, ..., Xs which are independent copies of a symmetric random matrix X ∈ Rdxd with E[X] = 0,
| X |2≤ γ and |E[XTX]|2 ≤ σ2

Let W = 1
s

∑
i∈[S]Xi.

For any ε > 0 ,
Pr[|W |2 > ε] ≤ 2d.e−sε2/(σ2+ γε

3 )

Then Pr[|Id − (PHDA)T (PHDA)|2 > ε] ≤ 2d.e−sε2/(Θ(d log(nd
δ

)))

If we set s = d log(ndδ ) log(nd
δ

)
ε2 to make this probability less than δ

2
This implies that for every unit vector x , |1− |PHDAx|22| = |xTx− xT (PHDA)T (PHDA)x| ≤ ε,
so |PHDAx|22 ∈ 1± ε for all unit vectors x.
Thus if we consider the column span of A adjoined with b, we can solve the regression problem in
ω(nd logn) + poly(d logn

ε ), which is nearly optimal in matrix dimensions i.e. when n� d.
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