CS 15-859: Algorithms for Big Data Fall 2017

Lecture 2-1 — 14th September , 2017
Prof. David Woodruff Scribe: Nimrah Shakeel

Choosing the right sketching matrix S

Our goal is to choose a suitable sketching matrix S so that S*A can be computed in O(ndlog(n))
time. To this end, we choose a matrix S = P*H*D, such that P is a diagonal matrix with +1 on the
diagonals, H is a Hadamard matrix and P is a matrix that chooses a (small) subset of rows of P*H.
We can view P as having one 1 per row, where the column of each 1 indicates a row of P*H which
is to be selected.

We are assuming that the columns of A are orthonormal. We have to show that such a sketching
matrix satisfies the subspace embedding property i.e. for any unit vector x, the distortion due to
transformation by S is bounded by =+e.

Claim 1. | SAX |,> = | PHDAz |)> =1+
Proof: Since HD is a rotation matrix, we can say that multiplication by it does not change the
norm

| HDA |o* = | Az |* = 1,Vz

Let y = Ax
We will make use of the flattening lemma.

Lemma 1. For any particular y,
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Proof: Let C > 0 be a constant. We will first show that for any i € [n], we can say that
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Afterwards, we can apply a union bound over all i’s.

Notice that any particular ith row of HDY can be written as

| (HDY); |= Y _Hi;Djjy;
j

Recall the Azuma-Hoeffding lemma:

Lemma 2. : For zero mean bounded random variable Z; such that Z; < B; with probability 1
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Here s let Zj = Hiijjyj-
Then Z;’s are bounded random variables with 0 mean and | Z; |< % = B; with probability 1, for all
7



Consequently, we have 3 (ﬁj)2 = % , since y has unit norm.
This gives us
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for a suitable C.

Consequences of the flattening lemmoa:

Remember that A has orthonormal columns ,and so has HDA.
The flattening lemma implies that for any particular i € d
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with probability 1 — %

nd
This gives us that | e;HDAe; |> C/ logT‘s with probability 1 — %, for all i,j.

nd
Further, we can say that | e;HDA |3< CY/ dlo% , for all j.
Matriz Chernoff Bound

Let X1, ..., X, be independent copies of a symmetric random matriz X € R with
E[X]=0,| X [2< v and | BE[XTX] |2< ¥?
Let W= 1319 Xi
For any e >0
Pr{[Wly > €] < 2d.e™ ¥*+7%
where |W |y denotes the spectral norm such that
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Let V. =HDA , then V is a matriz with orthonormal columns.
Suppose P in S = PHD samples s rows uniformly with replacement. If row i is sampled in the jth
sample, Pj; = \/g, and is 0 otherwise.
Let Y; be the ith sampled row of V.= HDA
Let X; = I; —nY;1Y;
Then .
E[X)]=14—n. ;(n)VjTVj =1, V'V =%

| Xil2 < |Igl2 + n.maz|e; HDA|3 = 1+ n.C?log %dg = O(dlog %1)
n
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Let us define
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Note that E[XTX + I,] and Z are real symmetric , with non-negative eigenvalues.

Claim 2. : For all vectors y, we have

TEXTX + Iy < y" Zy

Proof:
yrEIXTX + Iy =n_ y" v viylvila® =0 vi, ylvil22
Also,
9 d d 9 nd
yrZy =n)_y v viyC?log(~).— = dzvzyC log(—)
Hence

|EIXTX]|o < |E[XTX] + Iglo+ | Iy |o=| exp XTax + I |2 +1
d
<1Z]2 +1 < C*dlog("5) + 1

EIXTX]]> = w(dlog("2))

Recall the Matrix Chernoff bound which says that
For X1, ..., X which are independent copies of a symmetric random matrix X € R%? with F[X] = 0,
| X |2< v and |E[XTX]|2 < o2
Let W = 1Y c Xi-
For any € > 0,
PrijW|a > ¢ < 2d.e 5/ (7" +%)

Then Pr(|I;— (PHDA)"(PHDA)|> > | < 2. =3¢/ (O(dlog(%51))

If we set s = dlog("d)log( i) to make this probability less than 2 5

This implies that for every unit vector x , |1 — |[PHDAz|5*| = 272 — 2T (PHDA)T (PHDA)x| < e,

so |[PHDAz|5* € 1 + € for all unit vectors x.

Thus if we consider the column span of A adjoined with b, we can solve the regression problem in
w(ndlogn) + poly(dlog”) which is nearly optimal in matrix dimensions i.e. when n > d.




