
CS 15-859: Algorithms for Big Data Fall 2017

Lecture 11-Part 2 – Thursday 11/16/2017
Prof. David Woodruff Scribe: Dimitris Konomis

1 Introduction

This lecture presents, at a survey level the following topics:

• Projection onto Complicated Objects and Gaussian Mean Width

• M-estimator Loss Functions for Regression

• Compressed Sensing

2 Projection onto Complicated Objects and Gaussian Mean Width

We have seen that least squares regression finds the closest point y in a subspace K to a given point
b, with the subspace K being simply the column space of A.

y′ = argminy∈K‖Sy − Sb‖2 (1)

‖y′ − b‖2 ≤ (1± ε) min
y∈K
‖y − b‖ (2)

‖S(y − y′)‖2 = (1± ε)‖y − y′‖,∀y, y′ ∈ K (3)

What properties of K determine the dimension and sparsity of S?

2.1 Example: Preserving Distances in a Set

What is the answer to the previous question, when K is:

• A set of n arbitrary points in Rd?

• A set of n arbitrary points on a line in Rd?

[Hint: Johnson-Lindensrauss Lemma]

1



2.2 Spherical Mean Width

Let K be a bounded subset in Rn. The width in direction u for a unit vector u as:

Definition.
u = supp,q∈K〈u, p− q〉 (4)

Then the spherical mean width of K is just the expectation over (infinitely many) directions u
of the above width direction:

s(K) = Eu[supp,q∈K〈u, p− q〉] (5)

2.3 Gaussian Mean Width

We now formally define the gaussian mean width, g(K), which be thought of as describing the
`2 complexity of the subspace K.

Formally it is defined as:

Definition.
g(K) = Eg[supp,q∈K〈g, p− q〉], (6)

where g ∈ Rn is a i.i.d Gaussian vector g ∼ N (0, In).

Is is straightforward to compute that the ratio of the gaussian mean width over the spherical mean
width is:

g(K)
s(K) = Θ(

√
n) (7)

It is also straightforward to compute the guassian mean width for the following cases:

• K = Sn−1. In this case, g(K) = Θ(
√
n).

• K = {u1, . . . ud}, where ui ∈ Rn, with ‖ui‖2 = 1, ∀i ∈ [d]. In this case, g(K) = Θ(
√
d).

• K = {u1, . . . ut}, where ui ∈ Rn, with ‖ui‖2 = 1, ∀i ∈ [t]. In this case, g(K) = Θ(
√

log t).

We only present the analysis of the last case, for which it is technically harder to compute g(K).

Indeed, let u1, u2, . . . , ut ∈ Rn, with ‖ui‖2 = 1,∀i ∈ [t] be t arbitrary unit vectors in Rn. Let also
g ∈ Rn be an i.i.d. gaussian random vector. Also, let Zj , j ∈ [t] be the random variable:

Zj = 〈uj , g〉, (8)

which is, by the 2-stability property of the normal distribution, a N (0, 1) random variable. We need
to bound the quantity Eg[maxj Zj ].
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Indeed, for any λ > 0:

E[eλmaxj Zj ] ≤
t∑

j=1
E[eλZj ]

= teλ
2/2, (9)

where the inequality follows from (?) and the equality uses the fact for a N (0, 1) normal variable w:

E[eλw] = eλ
2/2 (10)

Therefore, for any λ > 0:

Eg[max
j
Zj ] ≤

1
λ

logE[emaxj Zj ]

≤ log t
λ

+ λ

2
= 2

√
log t, (11)

2.4 Sketching Bounds

Theorem 1 (Gordon, 1988 [3]). Let K be a subset of Sn−1. If G is a random Gaussian matrix
with s = g(K)2

ε2 rows, then for all y, y′ ∈ K:

‖G(y − y′)‖22 = (1± ε)‖y − y′‖22 (12)

Theorem 2 (Bourgen, Dirksen, Nelson, 2015 [1]). S can have m = g(K)2poly(logn)
ε2 rows and

s = poly(logn)
ε2 non-zeros per column if m and s satisfy a condition related to higher moments of

supp,q〈g, p− q〉.

[1] contains similar results for finite and infinite union of subspaces.

3 M-Estimator Loss Functions for Regression

We have seen ways to use linear sketching and obtain fast, approximate randomized algorithms for `1
and `2 regression respectively. `1 regression can be solved efficiently using Linear Programming and
is less sensitive to outliers than `22 regression, whereas `22 regression enjoys smoothness properties
and has a closed form solution.

In practice, statisticians and data scientists use other fitness measures which try to combine the
benefits of both `1 and `22 regression.

A very common loss used in practice is the so-called Huber loss:

3



MH(x) =
{
x2

2c , |x| ≤ c
|x| − c

2 , |x| > c
(13)

Other examples of loss functions include the L1-L2 loss:

ML1−L2(x) = 2(

√
1 + x2

2 − 1), (14)

the Fair Estimator loss:

MF (x) = c2( |x|
c
− log(1 + |x|

c
)) (15)

and the Tukey Estimator loss:

MT (x) =
{
c2

6 (1− [1− (xc )2]3), |x| ≤ c
c2

6 , |x| > c
(16)

3.1 Nice M-Estimators

Definition. An M -estimator is called nice if it has at least linear growth and at most quadratic
growth. Formally, there exists a constant CM > 0. such that for all a, a′ with |a| ≥ |a′| > 0, the
following holds true:

CM |
a

a′
| ≤ M(a)

M(a′) ≤ |
a

a′
|2 (17)

Furthermore, an M -estimator is defined to have the value 0 at 0 (M(0) = 0).

Definition. An M -estimator is called sketchable if there is a distribution on matrices S ∈ Rk×n,
where k is a slow-growing function of n and for which, with good probability, the following holds
true:

‖Sx‖M = Θ(‖x‖M ) (18)

It is relatively straightforward to prove that any convex M satisfies the lower bound of equation
(17). Indeed:

M(a′) = M(a
′

a
· a+ (1− a′

a
) · 0)

≤ a′

a
M(a) + (1− a′

a
)M(0)

= a′

a
M(a) (19)
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It can also be proved that any sketchable M satisfies the quadratic upper bound of equation (17).

3.2 Nice M-Estimator Theorem

The following theorem, due to Woodruff and Clarkson, guarantees the existence of a fast algorithm
for approximate M -regression.

Theorem 3 (Woodruff, Clarkson, 2013). There exists an algorithm, that uses sketching, runs
in O(nnz(A) + poly(d logn)) time and outputs x′ ∈ Rd, such that for any constant C > 1, with
probability at least 99%, the following holds true:

‖Ax′ − b‖M ≤ C min
x
‖Ax− b‖M (20)

It is important to point out the following remarks:

Remark 1. For convex nice M -estimators, we can solve the M regression problem using convex
programming, in polynomial time (poly(nd)), that is slow in practice.

Remark 2. The sketch of the approximate algorithm is universal, in the sense that the same
M -sketch works for all nice M -estimators.

3.3 M-Sketch

The universal M -sketch is the following block matrix:

T =


S0 ·D0
S1 ·D1
S2 ·D2

...
Slogn ·Dlogn

 (21)

The matrices Si, i ∈ [logn] are independent CountSketch matrices with poly(d) rows and n columns,
where as the matrices Di, i ∈ [logn] are diagonal and perform uniform sampling of the n rows,
scaling by a factor of 1

(logn)i .

The crucial property that we want T to satisfy is, for any y = Ax− b:

‖T (Ax− b)‖w,M ≈ ‖Ax− b‖M (22)

It can be seen that both large coordinates and small coordinates can be efficiently sampled using T
As an example, consider the vector y = (n, 1, 1, . . . 1). For further details, check [2].
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4 Compressed Sensing

In the compressed sensing problem, we are trying to estimate a vector x ∈ Rn by having access (due
to for example physical constraints) to random linear measurements of x instead.

In our context, we choose a random sketching matrix S ∈ Rr×n and observe S · x. We want to
output a vector x′ ∈ Rn such that:

‖x− x′‖p = D · min
k−sparsez

‖x− z‖q, (23)

where D is the distortion, also known as `p/`q-guarantee in the literature.

There are two main schemes for estimating such an x′ ∈ Rn:

• Randomized (“for-each") schemes

• Deterministic (“for-all") schemes

Let xk denote the best k-sparse approximation to x, i.e. the vector containing the largest k
coordinates in magnitude.

The famous CountSketch matrix provides with a randomized scheme, achieving the `2/`2 guarantee
with high probability:

‖x− x′‖2 = O(1) · ‖x− xk‖2 (24)

4.1 CountSketch for Compressed Sensing

Indeed, multiplying by a CountSketch matrix S with O(k logn) rows can be thought of as O(logn)
repetitions of hashing into O(k) buckets. S is a random linear map. As we have already seen in the
class, S estimates every coordinate, xi, i ∈ [n] of a x ∈ Rn vector up to an additive error of ‖x−xK‖2√

k
.

If we output the 2k-sparse vector x′ ∈ Rn that consists of the top 2k (with respect to magnitude)
estimates given by CountSketch, we can prove that equation (24) is satisfied with very high
probability. Before giving the proof of this claim, we define two useful notions.

Definition. A coordinate i is heavy if:

|xi| ≥
‖x− xk‖2√

k
(25)

It is easy to see that there can be at most 2k heavy coordinates.

Definition. A coordinate i is super-heavy if:

|xi| ≥ 3 · ‖x− xK‖2√
k

(26)
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One can now observe that the set T of super-heavy coordinates is in the support of the vector x′.

Therefore:

‖x− x′‖2 ≤ ‖(x− x′)T ‖2 + ‖(x− x′)[n]\T ‖2

≤
√

2k · ‖x− xK‖2√
k

+ ‖(x− x′)[n]\T ‖2

≤
√

2‖x− xk‖2 + ‖(x− xk)[n]\T ‖2 + ‖(xk − x′)[n]\T ‖2
= O(‖x− xk‖2), (27)

as desired.

4.2 No Deterministic Scheme for `2/`2 distortion

Let us consider k = 1 and suppose, for the sake of contradiction, that S is a deterministic sketching
matrix with r = o(n) rows. It suffices to show that there exists a vector x ∈ ker(S) which, for any
constant C > 0 satisfies:

‖x‖∞ ≥ C‖x− x1‖2 (28)

Without loss of generality, assume that S has orthonormal rows. Since
∑
i‖Sei‖22 = r, therefore

there exists a coordinate j with ‖Sej‖22 ≤ r
n . Let x be:

x = ej − STSej , (29)

from which it is clear that x ∈ ker(S). Then:

‖x‖2∞ ≥ |xj |2

= (eejj − eTj STSej)2

≥ (1− r

n
)2, (30)

while at the same time:

‖x− x1‖2 ≤ ‖x− ej‖2
= ‖STSej‖2
= ‖Sej‖2

≤
√
r

n

= o(1) (31)
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4.3 Deterministic Schemes for `2/`1 distortion

Definition. Matrix S has the (ε, k)-restricted isometry property (RIP), if for all k-sparse
vectors x ∈ Rn, the following holds:

(1− ε)‖x‖22 ≤ ‖Sx‖22 ≤ (1 + ε)‖x‖22 (32)

It can be shown, that if S has the (ε, k)-RIP property, then one can efficiently output an x′ ∈ Rn
for which:

‖x− x′‖2 = O( 1√
k

)‖x− xk‖1, (33)

by solving the following Linear Program:

RIP − LP :
{

min
z∈Rn

‖z‖1
s.t Sz = Sx

(34)

The proof that x′ ∈ Rn satisfies equation (33) uses the (ε, k)-RIP property and elementary norm
manipulations.

There are deterministic, but not explicit matrices S with O(k log(nk )) rows that have the (ε, k)-RIP
property for constant ε.

A major open question in the area remains if there exists an explicit matrix with (ε, k)-RIP
property that has only o(k2) rows. Bourgain et al [4] can get k2−γ rows for a constant γ > 0 and
k ≈
√
n.
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