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1 Weighted Low Rank Approximation

1.1 Problem Setup

In the Weighted Low Rank Approximation (WLRA) problem, we are given: A € R"*" W € R"*"
k€N, e > 0. A is the input matrix and W is the weight matrix. Our goal is to output:

rank-k A € R™ ™ such that
[Wo(A—A)7<(14€) min ||[Wo(4 - A}
rank-k A’
Let us define:

_ . I 2 _ 2 / 2
OPT_rar{E—IIan’HWO(A A)lr = ralguglA/ZW (A7 — Aij)

Since A is rank k, we can alternatively write this as output:
U, VT € R™* such that

W o (UV — A)||% < (1+¢) OPT

1.2 Motivation

Suppose there are several movies that can be grouped into several categories (eg. action, comedy,
historical, cartoon, magical) and each movie is rated by several people. Each rater has his own
distribution from which he chooses to assign scores to movies, so it seems natural to scale each
rater’s score by the inverse of his distribution’s standard deviation. Therefore a weight matrix W
can be constructed for this purpose for fair comparison across ratings.

Another motivation comes from a closely related problem, Matrix Completion. We are given
Ae{R,7}™" Q C [n] x [n] and k € R. A is the entire matrix with some entries missing denoted
as 7, Q are the observed entries. We want to fill in the missing entries of A such that rank(A) = k.
In other words output Ag such that rank(A) = k. To solve this problem we can assign 0 weight to
the missing entries and solve the Weighted Low Rank Approximation problem with the given k.

Finally many real-life datasets such as RateBeer, documents, amazon and biology all use Weighted
Low Rank Approximations.



1.3 Results

The following results are from [5]. We will make one of the following assumptions on the weight
matrix W to simplify the problem:

1. W has r distinct rows and columns.
2. W has r distinct columns.

3. W has rank at most r.

W has r distinct rows and columns:

Given: A € R™", W € R™" with r distinct rows and columns, k € N, € > 0. We can output:
rank-k A € R"™" such that

[Wo(A-A)% < (1+¢) OPT
with probability 9/10 in:
O((nnz(A) + nnz(W)) -n7) +n - 20(k?r/c)
time, for an arbitrarily small constant v > 0.

W has r distinct columns:

The time complexity is now:
O((nnz(A) + nnz(W)) -n") +n - 9O(k?r?/e)
time, for an arbitrarily small constant v > 0.

W has rank r:

The time complexity is now:
nO(k2r2/e)

time. Previously only » = 1 was known to be in polynomial time.

1.4 Hardness Results

For this we will use the the Random-4SAT Hypothesis [2, B]. Given a random 4-SAT formula S on
n variables, each clause with 4 literals. suppose each of the ©(n?) clauses are picked independently
with probability ©(1/n3), m = ©(n) is the number of clauses, any algorithm that outputs 1 with
probability 1 when § is satisfiable and outputs 0 with probability > 1/2 requires 29(n) time. Note
that the probability is over the input instances.

We will also consider the Maximum Edge Biclique (MEB) problem. Given a bipartite graph
G = (U,V, E) with |U| = |V| = n, we wish to output a ki-by-ke complete bipartite subgraph of G
such that kj - ko is maximized.



The following result is from [3]. Assume that the Random-4SAT Hypothesis is true, then there
exists 2 constants €; > e3 > 0 such that any algorithm that distinguishes between bipartite graphs
G = (U,V,E) with |U| = |V| = n in 2 cases:

1. there is a bipartite clique of size > (n/16)%(1 + ;)

2. all bipartite cliques are of size < (n/16)?(1 + €3)
requires 22n) time.

Additionally, we have a reduction from MEB to WLRA: Given an instance of the MEB prob-
lem, a bipartite graph G = (U, V, E) with |U| = |V| = n, we wish to output a ki-by-ks complete
bipartite subgraph of G such that ki - ks is maximized. Note that this problem is equivalently hard
to its complement: when we wish to output a ki-by-ko complete bipartite subgraph of G such that
|E| — k1 - ko is minimized. Now we can transform this instance of the MEB problem to an instance
of the WLRA problem: set matrix A as follows:

{1 if edge (U;, Vj) exists
A=

0 else

and set the weight matrix W as follows:

6

{ 1 if edge (U;,V;) exists
Wi,j =
n’ else

This implies that if you can get a (1 + ¢€) close approximation to OPT in WLRA, even with r =1
and with an arbitrary W matrix (not necessarily low rank or with distinct rows and/or columns),
then I can obtain a (1 + €) close approximation to OPT in MEB complement. But we know that
the MEB complement problem and MEB problem takes 22 time if we assume the Random-4SAT
Hypothesis. Stating this formally, given A € R™*"™ W € R™*" with r distinct columns, k € N,
e>0,W;; €{0,1,2,...,poly(n)}, to output:

rank-k A € R™ ™ such that

[Wo(A—A)|% < (1+¢) OPT

with probability 9/10 and assuming the Random-4SAT Hypothesis, J¢y such that for any algorithm
with € < ¢y and k > 1 takes 22(") time.

1.5 Algorithmic Techniques

Despite this hardness result, we can improve the time complexity using several algorithmic techniques.
We will use the following;:

Polynomial System Verifier

Recall the Polynomial System Verifier from [I, [6]. Given a real polynomial system P(x) with
v variables, * = (z1,x2,...,Zy), m polynomial constraints f;(z) > 0, Vi € [m], d the maximum



maximum degree of all polynomial constraints, H the bitsizes of the coefficients of the polynomials,
it takes:
(md)©“)poly(H)

time to decide if there exists a solution to polynomial system P.
Lower Bound on the Cost

This result is from [4]. Define T' = {z € R"|fi(x) > 0,..., f;m(x) > 0}, the feasible set. Suppose

we have a non-negative polynomial G(z) and we evaluate G(x) for all z € T. Suppose I tell you
that minger G(x) > 0. How small can minger G(x) be? It can get arbitrary smalll For example,
consider z1, 72 € R, no f; constraints, and let G(x1,72) = (z172 — 1)2 + 23. G(x1,72) > 0 since
G(r1,22) = 0 must imply that 2o = 0 which causes (z122 — 1)2 = 1, a contradiction. But we can
make G(x1,x2) arbitrary small by setting z1 — oo and 9 = 1/21 — 0.

To solve this problem, we can intersect 7 with a Ball = {z : ||z||sc < 27}. In the case above this
would prevent z; from increasing towards oo, effectively setting a lower bound on G(x1,x2). Then
the minimum value that nonnegative G takes over TN Ball is either 0 or > (2f +m)~%". This will
be our lower bound on the cost of the polynomial system, so that we can perform binary search
over the cost and know when to stop. Similar to the ellipsoid algorithm for linear programming.

Multiple Regression Sketch
Given: AW A®) A ¢ Rnxk and v@ p2) | (") ¢ R et

x(j) = argminHA(j)x — b(j)H% Vj e [m]
IERle

Choose S to be a random Gaussian matrix of size t X n, and denote the sketched solution:

y(j) = argminHSA(j)ﬂv - Sb(j)”% Vj € [m]
yekal

We have the following guarantee: for all € € (0,1/2), one can set t = O(k/e¢) such that:
ZHA(J')y(j) b2 <1 +e ZHA(J'):U(J') — b))
j=1 j=1

with probability 9/10.

1.6 Warmup: Inefficient WLRA Algorithm

Given: A € R™" W € R™" k € N, € > 0, suppose A;; € {0,£1,£2,.... A}, W;; €
{0,1,2,...,A}. Output
rank-k A € R™" such that

|Wo(A-A)|; < (1+¢€) OPT
with probability 9/10. The naive algorithm is as follows:
1. Create 2nk variables for U, VT € R**k,

2. Write polynomial g(z1, ..., zon) = |[W o (A —UV)|%.



3. Pick C € [L™, L], run polynomial verifier g(x) < C.

4. Optimize C by binary search over [L~, L].

The runtime is 2°4"%) . How can we do better? The step which incurs too much time is step 1,
where we create 2nk variables for U and V. Recall that polynomial verifier runs in (#constraints -
degree)OF#variables) anq the lower bound on the cost is (#constraints OUFvariee) \We would
like to write a polynomial with a few number of variables (poly(kr/e€)) without without blowing up
degree and number of constraints too much.

)—degree

1.7 Main Idea: Guess a Sketch

To reduce the number of variables to poly(kr/e), given that we can do Multiple regression sketch
with O(k/e€) rows and the Weight matrix W has rank at most r. Given the same inputs A, W, r, ke,
the algorithm is as follows. Let W; be the j-th column of W and set Dy, to be a diagonal matrix
with vector W;. The objective function is:

[Wo (UV —A)|% < (1+¢€) OPT

which we can rewrite as:

S IDw,UV; — D, A% < (1+¢) OPT S |U'VDy, — A'Dys[[3 < (14 ¢) OPT
j=1 i=1

which is in the form of a Multiple Regression problem, so we can sketch by Gaussian Matrix
S, TT ¢ R

S ISDw,UV; — SDw, Aj|3 Y _|lU'VDw,T — A'Dyw,T||3
j=1 i=1

and we can guess SDy,U € REXF) (and VDw,T € REX) by creating t x k variables for each of
n SDw,Us. But this would take n x ¢ X k variables! The key is to notice that W has rank r so
certain columns are linear combinations of others so we actually do not have to create variables
for all n SDw,Us. More formally, let W; be the j-th column of W, and consider the column span
of W which only has r column vectors. So we only create variables for SDy,U € REXK) V) e [r].
For those W} not in the column span of W, we can write it as a linear combination of the vectors
in the column span and express SDy,U as a linear combination of the existing variables in the
column span (eg. write SDw,U = SDw,U + SDyw,U using existing variables SDy, U, SDw,U if
W1, Wy € col(W) but Wy € col(W)). We create t x k variables for each SDy,U € RXF)  giving a
total of r x t x k variables.

1.8 Wrapping Up

We can use an explicit formula for the regression solution in terms of the variables created. The
regression solution is a rational function, but can use tricks to clear the denominator. Multiple
Regression Sketch + Bounded Rank Weight Matrix imply a small number of variables, and runs in

time nO(TkQ/e).



1.9 Open Problems

For a rank-r weight matrix W, the upper bound is nO(k>r/€) hut the lower bound is only 22r) can

we close this gap? Can we prove a hardness result with respect to the parameter k, e.g., a 22(*)
lower bound for WLRA problem?

1.10 Conclusion

Overall, we studied intractable matrix factorization problems through the lens of parameterized
complexity (nonnegative matrix factorization, weighted low rank approximation). Parameterized
Complexity gives a way of coping with intractability for emerging machine learning problems.
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