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Part 2

Recall we are trying to solve the following problem:

Definition. Given a n× d matrix A and b ∈ Rn, the least squares linear regression problem
is to compute

arg min
x∈Rn

‖Ax− b‖22

We are interested in obtaining an approximation solution. Namely, given any ε > 0, we would like
to find x′ ∈ Rn such that ‖Ax′− b‖22 = (1± ε) minx∈Rn ‖Ax− b‖22. Our approach has been to choose
a k×n random matrix S of i.i.d. normal variables distributed N (0, 1/k), where k = d

ε2 . We want to
show that with high probability, for all x ∈ Rn we have ‖S(Ax− b)‖22 = (1± ε)‖Ax− b‖22, meaning
that distances are approximately preserved under multiplication by S.

Picking up where we left off: let g be any vector of normal random variables distributed N (0, 1/k).

Claim 1. If u, v ∈ Rn are orthogonal vectors (i.e. 〈u, v, 〉 = 0), then the random variables 〈g, u〉
and 〈g, v〉 are independant.

Proof. Since u, v are orthogonal, we can fix any rotation matrix R such that Ru = αe1 and
Rv = βe2, where α, β ∈ R and e1, e2 are standard orthonormal basis vectors. Since we know that
normal variables are rotationally invariant and rotations preserve inner products, then 〈g, v〉 =
〈Rg,Rv, 〉 = 〈h, αe1〉 = αh1, where h is also N (0, 1/k) and hi is the i-th coordinate. Similarly
〈g, v〉 = 〈Rg,Rv〉 = βh2. Thus 〈g, u〉 and 〈g, v〉 are both independent normally distributed random
variables αh1, βh2 as desired. �

We use this prior claim to show:

Proposition 1. The matrix SA is a k × d matrix of i.i.d. N (0, 1/k) random variables.

Proof. First observe that we can assume the columns of A are orthonormal. The justification is as
follows. We want to prove our result for all x, and in the singular value decomposition of A we have
A = UΣV T where U has orthonormal columns. Thus if we prove that ‖SUx−Sb‖22 = (1±ε)‖Ux−b‖22
for any x, then setting x = ΣV T y for any y proves ‖S(Ay − b)‖22 = (1 ± ε)‖Ay − b‖22 as desired.
Then similarly by scaling we can assume the columns of A are all unit vectors.

Now the rows of SA are each of the form 〈g,A1〉, 〈g,A2〉, . . . , 〈g,Ad〉, which are independent by the
prior claim. We have 〈g,Ai〉 =

∑n
j=1 gjAi,j . Now each gj is N (0, 1/k), so

∑n
j=1 gjAi,j is normal

N (0, 1
k

∑n
j=1A

2
i,j). But each Ai is a unit vector, thus 〈g,Ai〉 is normal N (0, 1/k). So each entry in

SA is normal N (0, 1/k) as desired. �
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Subspace Embeddings

We now attempt to show that applying S to the subspace spanned by a matrix A results in low
distortion of norms. In other words, the column space of A is approximately preserved under
multiplication by S

Definition. A matrix S is a Subspace Embedding if with high probability, ∀x ∈ Rn we have
‖SAx‖22 = (1± ε)‖Ax‖22.

First note that, since we are looking for a multiplicative error, by scaling we can assume that x is a
unit vector (x ∈ Sd−1), and again as in the last proposition, we assume A has orthonormal columns.
The following is standard;

Fact 1. If A has orthonormal columns then ‖Ax‖22 = ‖x‖22.

Now fix any x ∈ Rd. Then ‖SAx‖22 =
∑k
i=1〈gi, x〉2 where gi is the i-th row of SA (which is normal

N (0, 1/k) as just proved). Now ‖x‖2 = 1, so just as before we have that each 〈gi, x〉2 is distributed
N (0, 1/k)2, and E[〈gi, x〉2] = 1

k , thus E[‖SAx‖22] = 1. Since ‖Ax‖22 = 1, we want ‖SAx‖22 to be
tightly concentration around its expectation, so that w.h.p. ‖SAx‖22 = (1 ± ε). To show this
concentration, we invoke a classic result:

Theorem 1 (Johnson-Lindenstrauss). Suppose h1, . . . , hk are i.i.d. N (0, 1), and let G =
∑
i h

2
i .

Then for x > 0:
Pr[G > k + 2

√
kx+ 2x] < e−x

Pr[G < k − 2
√
kx] < e−x

Note that E[G] = k. Additionally observe that if we want a constant factor approximation of G,
then setting x = Θ(k) will give the result with probability e−Θ(k). By the union bound, setting
x = ε2k

16 , then G will be (1± ε)k with probability at least 1− 2e−ε2k/16. Setting k = Θ(ε2 log(δ−1))
gives the result with probability at least (1− δ).

Now how can we apply this to our problem? Since ‖SAx‖22 =
∑k
i=1〈gi, x〉2 is a sum of squared

normal random variables, applying the above theorem gives us

Pr[‖SAx‖22 = (1± ε)] ≥ 1− 2Θ(d)

Which is close to the result we want. Unfortunately, this holds for only one value of x, and we need
it to hold for all values of x. Since there are infinitely many, we cannot union bound over all the
vectors x that we need, thus we must construct a γ-net and union bound over it.

γ-nets

Definition (γ-net). LetM be any metric space, and S a subset. Then a γ-net N of S is a subset
of S such that ∀x ∈ S,∃y ∈ N such that d(x, y) ≤ γ.
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Since we need only consider unit vectors, we now construct a γ-net for the d-dimension unit sphere
Sd−1. To do so, we utilize the following greedy approach:

Algorithm 1: Greedy Algorithm for γ-net
Input: γ > 0
Result: A γ-net N of Sd−1

1 N ← ∅
2 while ∃x ∈ Sd−1 that is not γ close to any y ∈ N do
3 N ← N ∪ {x}
4 end
5 return N

Clearly the resulting set N is a γ-net, otherwise the algorithm would not have halted. We now show
that N is not too large.

Claim 2. The γ-net N produced by the above greedy algorithm satisfies |N | ≤ (1+γ/2)d

(γ/2)d .

Proof. Let B(x, r) be the open ball of radius r centered at x. Since every time we added an x
to N in the algorithm, x was not contained in any ball of radius γ centered at any other point
in N . Therefore the set of balls B = {B(x, γ/2) | x ∈ N} is pairwise disjoint (if it were not, one
element of N would be contained in a ball of radius γ around another). Furthermore, the set B is
contained within the ball B(0, 1 + γ/2), which has volume C(1 + γ/2)d, where C is some constant
depending on d. Similarly, we have Vol(B) = |N |C(γ/2)d, and since Vol(B) ≤ Vol(B(0, 1 + γ/2)) by
containment, it follows that |N | ≤ (1+γ/2)d

(γ/2)d . �

Now let M = {Ax | x ∈ N} where N is the net generated by the greedy algorithm. Then M is
the image of the γ-net N under multiplication by A. Clearly |M | ≤ |N |, and in fact this holds at
equality by the orthonormality assumption on A. We would now like to show that M is a γ-net for
the subspace spanned by A.

Claim 3. For all x ∈ Sd−1, there exists a y ∈M so that ‖Ax− y‖2 ≤ γ.

Proof. Fix such an x, and let x′ be s.t. ‖x − x′‖2 ≤ γ. Then ‖Ax − Ax′‖ = ‖x − x′‖ ≤ γ by
orthonormality of A. Thus y = Ax′ ∈M suffices. �

Now let us recall where we are. We have proven for a fixed x that Pr[‖ASx‖22 = (1±ε)] ≥ 1−2−Θ(d),
and accordingly for any fixed pair x, x′ ∈ Sd−1 the values ‖SAx‖22, ‖SAx′‖22, and ‖SA(x− x′)‖22 are
preserved up to a (1± ε) factor with probability at least 1− 2−Θ(d). Now write:

‖SA(x− x′)‖22 = ‖SAx‖22 + ‖SAx′‖22 − 2〈SAx, SAx′〉

‖A(x− x′)‖22 = ‖Ax‖22 + ‖Ax′‖22 − 2〈Ax,Ax′〉

Because A(x − x′) has bounded norm, it follows that ‖SA(x − x′)‖22 = (1 ± ε)‖A(x − x′)‖22 =
‖A(x− x′)‖22 ±O(ε), and the same result applies to each of ‖SAx‖22, ‖SAx′‖22. Thus each *norm*
term in the above two equations is preserved up to an additive O(ε) term. It follows that

Pr[〈Ax,Ax′〉 = (1± ε)〈SAx, SAx′〉 ±O(ε)] ≥ 1− 2−Θ(d)
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Therefore, with the above probability, S preserves inner products up to an additive O(ε) factor (for
any fixed x, x′). Now fix a 1/2-net N of Sd−1, and let M = {Ax | x ∈ N} be its image under A
(which is again a 1/2 net of A(Sd−1) as proven earlier). We know |M | ≤ 5d by our earlier upper
bound. Now by the union bound, we have

Pr[∀y, y′ ∈M, 〈y, y′〉 = 〈Sy, Sy′〉 ±O(ε)] ≥ 1− 2−Θ(d) (1)

And we now condition on this event. By the linearity of the inner product, for any scalars α, β
and y, y′ ∈M , we have 〈αy, βy′〉 = αβ〈Sy, Sy′〉 ±O(εαβ). Thus S preserves all inner products and
scalings of vectors in our net M . Now let y = Ax or any x ∈ Sd−1. Our goal will now to be to find
a sequence of scaled vectors y1, y2, . . . fromM whose sum converges to y. This will be done as follows:
Procedure for generating y1, y2, . . .

1. First, pick y1 ∈M such that ‖y − y1‖2 ≤ 1
2 , which we can do by the 1

2 -net property.

2. Let α > 0 be such that ‖α(y − y1)‖2 = 1 (α is just 1
‖y−y1‖2

). Then α(y − y1) ∈ Sd−1, so

3. Let y′2 ∈M be such that ‖α(y − y1)− y′2‖2 ≤ 1
2 , which we can do again by the net property.

Then because α = 1
‖y−y1‖2

≥ 2, we have

‖y − y1 −
y′2
α
‖2 ≤

1/2
α
≤ 1

22

4. Set y2 = y′2
α , and repeat to obtain y1, y2, y3, . . .

In general, the result of this is that ‖y −
∑k
i=1 yi‖ ≤ 1

2i , thus the sum
∑∞
i=1 yi converges to y as

desired. We now argue the following:

Proposition 2. For any x ∈ R, conditioned on equation (1), we have ‖SAx‖22 = (1± ε)‖Ax‖2.

Proof. Writing yi = (−y+ y1 + · · ·+ yi) + (y− y1 − · · · − yi−1), by the triangle inequality we obtain

‖yi‖2 ≤ ‖ − y + y1 + · · ·+ yi‖2 + ‖y − y1 − · · · − yi−1‖2

≤ 1
2i + 1

2i−1

≤ 1
2i−2

Thus we have now that y =
∑∞
i=1 yi and ‖yi‖2 ≤ 1

2i−2 , so, expanding out, we write

‖Sy‖22 = ‖S
∞∑
i=1

yi‖22

=
∞∑
i=1
‖Syi‖22 + 2

∞∑
i=1

∞∑
j=1
〈Syi, Syj〉

=
∞∑
i=1
‖yi‖22 + 2

∞∑
i=1

∞∑
j=1
〈yi, yj〉 ±O(ε)

∞∑
i=1

∞∑
j=1
‖yi‖2‖yj‖2
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But note that since ‖yi‖2 ≤ 1
2i−2 , the sum

∑∞
i=1

∑∞
j=1 ‖yi‖2‖yj‖2 is doubly geometric, and therefore

a constant So the above quantity is just
∞∑
i=1
‖yi‖22 + 2

∞∑
i=1

∞∑
j=1
〈yi, yj〉 ±O(ε)

= ‖y‖22 ±O(ε)

= 1±O(ε)

and since this was for any y = Ax, where x ∈ Sd−1, by linearity we can scale and it follows that for
all x ∈ R we have ‖SAx‖22 = (1± ε)‖Ax‖2, which completes the proof. �

Back to Regression

So we have shown that S is a subspace embedding. We now come back to our problem of regression,
namely finding x such that ‖Ax− b‖2 ≤ (1 + ε) miny∈Rn ‖Ay − b‖2.

Theorem 2. If S is a random k×n matrix of i.i.d. N (0, 1/k) normal variables, then with probability
1− 2−Θ(d) we have minx∈Rn ‖S(Ax− b)‖2 ≤ (1 + ε) minx∈Rn ‖(Ax− b)‖2.

Proof. Since A was any matrix in the prior arguement, we now consider the subspaced spanned
by both A and b, and let y be any vector in this subspace. By the subspace embedding property
of S, we have ‖Sy‖2 = (1 ± ε)‖y‖2, thus ‖S(Ax − b)‖2 = (1 ± ε)‖Ax − b‖2 for all x ∈ Rn. Thus
minx∈Rn ‖S(Ax−b)‖2 ≤ (1+ε) minx∈Rn ‖(Ax−b)‖2, as desired. So by solving arg minx∈Rn ‖S(Ax−
b)‖2, we obtain a (1 + ε) approximate solution to the regression problem. �

Choosing the right sketching matrix S

We have now shown that solving the problem arg minx∈Rn ‖S(Ax − b)‖2 gives us a adequate
approximate solution to our regression problem. Unfortunately, computing the product SA can
take O(nd2) time. Since we can solve the problem exactly in same time, we have seemingly gotten
nowhere. However, if we cleverly choose S from a family of random matrices which still satisfies
the subspace embedding properties we have just shown for N (0, 1/k) matrices here, then we may
be able to do better. Namely, we will choose an S such that the computation SA can be done in
O(nd log(n)) time, which is an improvement for d = ω(log(n)). We first introduce a matrix with
useful symmetry properties.

Definition. For n = 2k, the n× n Hadamard matrix H is defined by:

Hi,j = 1√
n

(−1)〈i,j〉

where 〈i, j〉 is the dot product of k-bit binary represetions of i and j over the field F2.

Now let D be a diagonal n× n matrix of random ±1 entries. We claim:

Claim 4. The family of matrices S = PHD, where P is a matrix which selects a random subset of
rows of HD, satisfies the subspace embedding property.
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To begin, we first prove the following fact:

Proposition 3. The rows of the Hadamard matrix H are orthonormal.

Proof. Let Hi be the i-th row of H. First note that for any i 6= j

〈Hi, Hj〉 =
n∑
`=1

Hi,`Hj,`

= 1
n

n∑
`=1

(−1)〈`,i+j〉

Now since i 6= j, we can fix a coordinate q ∈ [k] such that iq 6= jq. Thus (i+j)q = 1. Now consider any
` ∈ [n], and let `′ ∈ [n] be the value ` but with the q-th bit flipped. Then (−1)〈`,i+j〉+(−1)〈`′,i+j〉 = 0,
since the values of the dot product are all the same except for the q-th position, where they
differ. Thus each value ` ∈ [n] cancels with the value `′ ∈ [n] for which the q-th bit is flipped.
Thus

∑n
`=1(−1)〈`,i+j〉 = 0, so 〈Hi, Hj〉 = 0, which proves that the columns of H are pairwise

orthogonal. �
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