CS 15-859: Algorithms for Big Data

Fall 2017

Scribe: Xiaofei Shi

Lecture 10 — Nov. 9th

Prof. David Woodruff

1 More on Streaming Lower Bounds

1.1 Distributional Communication Complexity

Recall the INDEX model,

- 1. Alice receives a binary string $x \in \{0,1\}^n$, Bob receives an integer $j \in \{1,2,\ldots,n\}$;
- 2. (1-way communication) Alice sends a single randomized message M to Bob;
- 3. Bob outputs b, which is his guess of x_i .

And recall that the INDEX model has the lower bound for deterministic communication complexity:

$$CC_{\delta}(\mathsf{INDEX}) \geq I(M; X|R) \geq n(1 - H(\delta)),$$

where R is the shared common random string. We need a lower bound when conditioning on R for our earlier **Gap-Hamming** lower bound, which was a reduction from INDEX using the shared common random string R.

Definition. Given $(X,Y) \sim \mu$, the μ -distributional communication complexity of a function f(X,Y) over the distribution μ , denoted by $D_{\mu}(f)$, is the minimum cost of a protocol that gives the correct answer with probability at least 2/3.

Theorem 1. (Yao's Minimax Principle) $R(f) = \max_{\mu} D_{\mu}(f)$.

Proof. It is easy to see that for all distributions μ , we have

$$R(f) \ge D_{\mu}(f),$$

hence

$$R(f) \ge \max_{\mu} D_{\mu}(f).$$

For the other direction, choose c such that $\max_{\mu} D_{\mu}(f) \leq c$. Consider the following 2 player zero-sum game. Player 1 chooses a deterministic protocol P for f of cost c (and whatever error), and Player 2 chooses an input (x, y). Both players make their choices in parallel, so that neither is aware of the other's choice.

The payoff for Player 1 is
$$\mathbb{1}_{[P(x,y)=f(x,y)]}$$
.

Now, the fact that $D_{\mu}(f) \leq c$ for every distribution μ implies that for every randomized strategy of Player 2 (i.e., for every probability distribution μ), Player 1 can obtain expected payoff 2/3 using

the protocol P of cost $D_{\mu}(f) \leq c$. By the min-max theorem for zero-sum games, Player 1 has a randomized strategy, with an expected payoff of 2/3 for every choice of inputs of Player 2. Now note that a randomized strategy for Player 1 is a distribution over cost c deterministic protocols, ie., a public coins protocol of cost at most c. Thus, there exists a public coin protocol of cost at most c that is correct on every input with probability at least 2/3. Together with the definition of $\max_{\mu}(\cdot)$ we can conclude that

$$R(f) \le \max_{\mu} D_{\mu}(f).$$

1.2 INDEX Problem with Product Distribution

Definition. The **communication matrix** A_f of a Boolean function $f: X \times Y \to \{0, 1\}$ is defined such that the (x, y)-th entry equal to f(x, y).

Theorem 2. [7] If Alice and Bob are independent, i.e. μ is a product distribution, then

$$\max_{product \ \mu} D_{\mu}(f) = \Theta(\textit{VC-dim of } A_f)$$

Remark 1. The reduction from Index is optimal for product distributions. Since for x and i are independent and uniformly distributed, jointly as μ^* , we have

$$D_{\mu^*}(f) = \Omega(n) \le \max_{\text{product},\mu} D_{\mu}(f) \le \max_{\mu} D_{\mu}(f) = R(f).$$

1.3 Indexing with Low Error

The INDEX problem with 1/3 error probability and 0 error probability both have $\Omega(n)$ communication complexity. But sometimes we expect to have a lower bound in terms of the error probability. So we considering the **Indexing on Large Alphabets** problem:

- 1. Alice receives a binary string $x \in \{0,1\}^{n/\delta}$ and wt(x) = n, Bob receives an integer $j \in [n/\delta]$;
- 2. Bob wants to decide if $x_i = 1$ with error probability δ .

The 1-way communication complexity is

$$\log \binom{n/\delta}{n} = \log \left(\frac{n/\delta}{n}\right)^n = \Omega(n\log(1/\delta)).$$

Then consider the case where n=1,

- 1. Alice has a string x in $\{0,1\}^{\{1/\delta\}}$ with exactly one coordinate j equal to 1
- 2. Bob has an integer i in $\{1, 2, ..., 1/\delta\}$.

Let y be the underlying vector that the stream is run on, which is initialized to all 0s. Suppose the dimension of the vector y is at least $1/\delta$. Then Alice creates the stream: $y_j \leftarrow y_j + 1$, and Bob creates the stream: $y_i \leftarrow y_i - 1$. At the end of the stream, we have $y = e_j - e_i$. If j = i,

then any norm of y is 0. Otherwise, any norm of y is non-zero. So a norm estimation data stream algorithm which succeeds with probability $1 - \delta$, can solve the **Indexing with low error** problem with probability $1 - \delta$. By the $\log(1/\delta)$ communication lower bound for indexing with low error shown above, we obtain a $\log(1/\delta)$ space lower bound for the data stream algorithm. It worth noticing that this reduction only works if the dimension of the vector y is at least $1/\delta$. For the case when the dimension of y is smaller than $1/\delta$, [6] shows how to get a lower bound of $\log(1/\delta)$.

In the last lecture, we saw an $\Omega(\log n)$ bit lower bound for norm estimation from the **Augmented Indexing communication** problem, and in the last lecture we saw an $\Omega(\epsilon^{-2})$ lower bound from the **Gap-Hamming** communication problem. Since **Indexing with Low Error** gives an $\Omega(\log(1/\delta))$ lower bound, in total we have an $\Omega(\log n + \epsilon^{-2} + \log(1/\delta))$ lower bound, since the lower bounds add. In fact it is known how to get a tighter lower bound of $\Omega(\epsilon^{-2}\log(1/\delta)\log n)$, that is, the three lower bounds we showed in class actually multiply [6].

Sometimes reduction to product distribution may not necessarily be optimal, since

$$\max_{\mu} D_{\mu}(f) \gg \max_{\text{product}\mu} D_{\mu}(f).$$

For example, consider the **Set disjointness** problem

- 1. Alice chooses a set $S \subset \{1, \ldots, n\}$
- 2. Bob chooses a set $T \subset \{1, \ldots, n\}$
- 3. Output 1 if $S \cap T = \emptyset$

It is known that for any deterministic protocol for solving the above problem has lower bound $\Omega(n)$, but for product distribution, $\max_{\text{product }\mu} D_{\mu} = \Omega(\sqrt{n} \log n)$ [2] [4].

1.4 $\operatorname{Gap}_{\infty}(x,y)$ Problem and Direct Sums

The $\operatorname{Gap}_{\infty}(x,y)$ problem is described as:

- 1. Alice has $x \in \{0, \dots, B\}^n$, Bob has $y \in \{0, \dots, B\}^n$
- 2. We are sure that $|x-y|_{\infty} \le 1$ or $|x-y|_{\infty} \ge B$
- 3. Output 1 if $|x-y|_{\infty} \le 1$ and 0 otherwise

It is shown that the $\operatorname{Gap}_{\infty}(\mathbf{x}, \mathbf{y})$ problem does not have a hard product distribution, but has a hard distribution $\mu = \lambda^n$ where the coordinate pairs $(x_1, y_1), \ldots, (x_n, y_n)$ are independent, and the distribution λ is

- 1. with probability 1-1/n, (x,y) random subject to $|x-y|_{\infty} \leq 1$
- 2. with probability $1/n,\,(x,y)$ random subject to $|x-y|_\infty \geq B$

Hence

$$\mu(x,y) = \prod_{i=1}^{n} \lambda(x_i, y_i).$$

Therefore, in order to solve $\operatorname{Gap}_{\infty}(\mathbf{x}, \mathbf{y})$ problem, we need to solve the single coordinate sub-problem g for n times, where g is

- 1. Alice has $J \in \{0, ..., B\}$, Bob has $K \in \{0, ..., B\}$
- 2. We are sure that $|J K|_{\infty} \le 1$ or $|J K|_{\infty} \ge B$
- 3. Output 1 if $|J K|_{\infty} \le 1$ and 0 otherwise

Define $IC(g) = \inf_{\psi} I(\psi; J, K)$, where ψ ranges over all 2/3-correct 1-way protocols for g. This is usually referred as the **Direct Sum** method.

Let Π be the message from Alice to Bob, concatenated with Bob's output. For $(X,Y) \sim \mu$, the information cost of the protocol is

$$I(\Pi; X, Y) = \sum_{i} I(\Pi; (X_i, Y_i) | X_{< i}, Y_{< i})$$

$$= \sum_{i} H(X_i, Y_i) - H(X_i, Y_i | X_{< i}, Y_{< i}, \Pi)$$

$$\geq \sum_{i} H(X_i, Y_i) - H(X_i, Y_i | \Pi)$$

$$= \sum_{i} I(\Pi | X_i, Y_i).$$

So we only need to show that $I(\Pi; X_i, Y_i) \geq IC(g)$ for each i = 1, ..., n.

Now we choose a specific joint distribution of λ [3], such that we always have $|X - Y|_{\infty} \leq 1$. It may be counterintuitive that λ always has $|X - Y|_{\infty} \leq 1$, but since Π must be correct on all inputs, the information measured with respect to λ will still turn out to be large. Define $D = ((P_1, V_1), \ldots, (P_n, V_n)) = (P, V)^n$,

- 1. P_i uniform on {Alice, Bob}
- 2. V_j uniform on $\{1,\ldots,B\}$ if P_j is Alice, V_j uniform on $\{0,\ldots,B-1\}$ if P_j is Bob
- 3. If P_j is Alice, then $Y_j = V_j$ and X_j is uniform on $\{V_j 1, V_j\}$; If P_j is Bob, then $X_j = V_j$ and Y_j is uniform on $\{V_j, V_j + 1\}$

It is worth noticing that X and Y are independent conditioned on D. In this case, we have

$$I(\Pi; X, Y|D) = \Omega(n)IC(q|(P, V)),$$

where $IC(g|(P,V)) = \inf_{\psi} I(\psi; J, K|(P,V))$, ψ ranges over all 2/3-correct protocols for g. Notice that for fixed P = Alice and V = v, this is $I(\psi; K)$ where K is uniform on $\{v - 1, v\}$, and

$$I(\psi; K) \ge D_{JS}(\psi_{v-1,v}, \psi_{v,v}).$$

Remark 2. Recall the properties for Hellinger Distance

1.
$$D_{JS}(\psi_{v-1,v},\psi_{v,v}) \geq h(\psi_{v-1,v},\psi_{v,v});$$

2.
$$h^2(\psi_{0,0}, \psi_{0,B}) = \Omega(1)$$
;

3. For 1-way protocol:
$$\psi_{a,b}(m, \text{out}) = p_a(m)q_{b,m}(\text{out})$$
;

4.
$$h^2(\psi_{a,b}, \psi_{c,d}) \ge 1/2[h^2(\psi_{a,b}, \psi_{a,d}) + h^2(\psi_{c,b}, \psi_{c,d})].$$

Since

$$\begin{split} &\frac{1}{2} \big[(1 - h^2(\psi_{a,b}, \psi_{a,d})) + (1 - h^2(\psi_{c,b}, \psi_{c,d})) \big] \\ &= \frac{1}{2} \sum_{m, \text{out}} \big[\sqrt{p_a(m) q_{b,m}(\text{out})} \sqrt{p_a(m) q_{d,m}(\text{out})} + \sqrt{p_c(m) q_{b,m}(\text{out})} \sqrt{p_c(m) q_{d,m}(\text{out})} \big] \\ &= \sum_{m, \text{out}} \frac{p_a(m) + p_c(m)}{2} \sqrt{q_{b,m}(\text{out}) q_{d,m}(\text{out})} \\ &\geq \sum_{m, \text{out}} \sqrt{p_a(m) q_{b,m}(\text{out}) p_c(m) q_{d,m}(\text{out})} \\ &= 1 - h^2(\psi_{a,b}, \psi_{c,d}). \end{split}$$

Based on the above properties, we have

$$\begin{split} IC(g|(P,V)) &\geq \frac{1}{2} \underset{v \in \{1,\dots,B\}}{\mathbb{E}} [D_{JS}(\psi_{v-1,v},\psi_{v,v})] + \frac{1}{2} \underset{v \in \{0,\dots,B-1\}}{\mathbb{E}} [D_{JS}(\psi_{v,v},\psi_{v,v+1})] \\ &\geq \frac{1}{2} \underset{v \in \{1,\dots,B\}}{\mathbb{E}} [h^2(\psi_{v-1,v},\psi_{v,v})] + \frac{1}{2} \underset{v \in \{0,\dots,B-1\}}{\mathbb{E}} [h^2(\psi_{v,v},\psi_{v,v+1})] \\ &= \frac{1}{2B} \left[\sum_{v \in \{1,\dots,B\}} |\sqrt{\psi_{v-1,v}} - \sqrt{\psi_{v,v}}|^2 + \sum_{v \in \{0,\dots,B-1\}} |\sqrt{\psi_{v,v}} - \sqrt{\psi_{v,v+1}}|^2 \right] \\ &\geq \frac{1}{4B^2} \left[\sum_{v \in \{1,\dots,B\}} |\sqrt{\psi_{v-1,v}} - \sqrt{\psi_{v,v}}| + \sum_{v \in \{0,\dots,B-1\}} |\sqrt{\psi_{v,v}} - \sqrt{\psi_{v,v+1}}| \right]^2 \quad \text{(by Cauchy-Schwartz)} \\ &\geq \frac{1}{4B^2} \left[\sum_{v \in \{0,\dots,B-1\}} |\sqrt{\psi_{v,v}} - \sqrt{\psi_{v+1,v+1}}| \right]^2 \\ &\geq \frac{1}{4B^2} \left[|\sqrt{\psi_{0,0}} - \sqrt{\psi_{B,B}}|^2 + |\sqrt{\psi_{B,0}} - \sqrt{\psi_{B,B}}|^2 \right] \\ &\geq \frac{1}{8B^2} \left[|\sqrt{\psi_{0,0}} - \sqrt{\psi_{0,B}}|^2 + |\sqrt{\psi_{B,0}} - \sqrt{\psi_{B,B}}|^2 \right] \\ &= \Omega(\frac{1}{B^2}). \end{split}$$

In summary, we get a $\Omega(n/B^2)$ lower bound for the $\operatorname{Gap}_{\infty}(\mathbf{x}, \mathbf{y})$ problem. Moreover, we can get a $\Omega(n)$ lower bound for **Set disjointness** problem [3].

Remark 3. The Direct Sums are nice, but usually a problem cannot be split into simpler subproblems. For example, there is no known embedding step in **Gap-Hamming** problem.

2 Nonnegative Matrix Factorization

2.1 Problem Setup

Main Question:

Given $A \in \mathbb{R}^{n \times n}$ and integer $k \geq 1$, is there an algorithm that can determine if there exist two matrices $U, V^T \in \mathbb{R}^{n \times k}$ such that

$$A = UV, \qquad U \ge 0, \ V \ge 0.$$

Or are there any hardness results?

Remark 4. The main question is equivalent to computing the nonnegative rank of A

Definition. For a matrix $A \in \mathbb{R}^{m \times n}$, the **nonnegative rank** of A is defined as

$$\operatorname{rank}_{+}(A) = \min\{q : \sum_{i=1}^{q} R_i = A, \operatorname{rank}(R_i) = 1, i = 1, \ldots, q\}.$$

Remark 5. By definition, it is easy to conclude that

$$rank(A) \le rank_+(A) \le min\{m, n\}.$$

Remark 6. Determining whether $rank(A) = rank_{+}(A)$ is NP-hard. [10]

2.2 Main Idea

Polynomial System Verifier:

Given a polynomial system P(x) over the real numbers, with

- v: # of variables, $x = (x_1, \ldots, x_v)$,
- m: # polynomial constraints $f_i(x) \ge 0, i = 1, ..., m$,
- d: maximum degree of all polynomial constraints,
- H: the bitsizes of the coefficients of the polynomials,

then in $(md)^{O(v)}$ poly(H) time, we can decide if there exists a solution to polynomial system P.

Therefore we can

- 1. Write $\min_{U,V^T \in \mathbb{R}^{n \times k}, U \geq 0, V \geq 0} \|UV A\|_F^2$ as a polynomial system that has $\operatorname{poly}(k)$ variables and $\operatorname{poly}(n)$ constraints and degree;
- 2. Use polynomial system verifier to solve it

2.3 Algorithms and Bounds

We can formulate the problem as follows

Given: $A \in \mathbb{R}^{n \times n}, k \in \mathbb{N}^*$

Question: Are there matrices $U, V^T \in \mathbb{R}^{n \times k}$ such that (NMF)

 $A = UV, \ U \ge 0, \ V \ge 0$

Output: Yes or No

There is a way of reducing (NMF) to the following k-Sum problem [1], which is defined as

Given: a set of n values $\{s_1, s_2, \ldots, s_n\}$ each in the range [0, 1]

Question: If there is a set of k numbers that sum to exactly k/2 (k-SUM)

Output: Yes or No

2.4 Upper Bounds

- 1. In [1], we can solve (NMF) in $n^{2^{O(k)}}$ time.
- 2. In [8], we can solve (NMF) in $2^{O(k^3)}n^{O(k^2)}$ time.

2.5 Lower Bounds

Exponential Time Hypothesis: states that 3-SAT (or any of several related NP-complete problems) cannot be solved in subexponential time in the worst case.

By [9], we can conclude the following claim:

Claim. Assume that 3-SAT on n variables cannot be solved in $2^{O(n)}$ time, then (k-SUM) cannot be solved in $n^{O(k)}$ time.

So under the **Exponential Time Hypothesis** [5], (NMF) requires at least $n^{\Omega(k)}$.

2.6 Open Problem

For (NMF) the upper bound is $n^{O(k^2)}$ while the lower bound is $n^{\Omega(k)}$. Can we find a tight bound?

References

[1] Sanjeev Arora, Rong Ge, Ravi Kannan, and Ankur Moitra. Computing a nonnegative matrix factorization - provably. SIAM J. Comput., 45(4):1582–1611, 2016.

- [2] László Babai, Peter Frankl, and Janos Simon. Complexity classes in communication complexity theory (preliminary version). In 27th Annual Symposium on Foundations of Computer Science, Toronto, Canada, 27-29 October 1986, pages 337–347, 1986.
- [3] Ziv Bar-Yossef, Thathachar S Jayram, Ravi Kumar, and D Sivakumar. An information statistics approach to data stream and communication complexity. In *Foundations of Computer Science*, 2002. Proceedings. The 43rd Annual IEEE Symposium on, pages 209–218. IEEE, 2002.
- [4] Arkadev Chattopadhyay and Toniann Pitassi. The story of set disjointness. ACM SIGACT News, 41(3):59–85, 2010.
- [5] Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems have strongly exponential complexity? In Foundations of Computer Science, 1998. Proceedings. 39th Annual Symposium on, pages 653–662. IEEE, 1998.
- [6] T. S. Jayram and David P. Woodruff. Optimal bounds for johnson-lindenstrauss transforms and streaming problems with subconstant error. *ACM Trans. Algorithms*, 9(3):26:1–26:17, 2013.
- [7] Ilan Kremer, Noam Nisan, and Dana Ron. On randomized one-round communication complexity. In *Proceedings of the twenty-seventh annual ACM symposium on Theory of computing*, pages 596–605. ACM, 1995.
- [8] Ankur Moitra. A singly-exponential time algorithm for computing nonnegative rank. *CoRR*, abs/1205.0044, 2012. URL: http://arxiv.org/abs/1205.0044, arXiv:1205.0044.
- [9] Mihai Pătrașcu and Ryan Williams. On the possibility of faster sat algorithms. In *Proceedings* of the twenty-first annual ACM-SIAM symposium on Discrete Algorithms, pages 1065–1075. SIAM, 2010.
- [10] Stephen A. Vavasis. On the complexity of nonnegative matrix factorization. *CoRR*, abs/0708.4149, 2007. URL: http://arxiv.org/abs/0708.4149, arXiv:0708.4149.