CS 15-859: Algorithms for Big Data Fall 2017

Lecture 10 — Nov. 9th
Prof. David Woodruff Scribe: Xiaofei Shi

1 More on Streaming Lower Bounds

1.1 Distributional Communication Complexity

Recall the INDEX model,

1. Alice receives a binary string « € {0,1}", Bob receives an integer j € {1,2,...,n};
2. (1-way communication) Alice sends a single randomized message M to Bob;

3. Bob outputs b, which is his guess of x;.

And recall that the INDEX model has the lower bound for deterministic communication complexity:
CCs(INDEX) > I(M; X|R) > n(1 — H(0)),

where R is the shared common random string. We need a lower bound when conditioning on R
for our earlier Gap-Hamming lower bound, which was a reduction from INDEX using the shared
common random string R.

Definition. Given (X,Y) ~ p, the p-distributional communication complexity of a function
f(X,Y) over the distribution 4, denoted by D, (f), is the minimum cost of a protocol that gives
the correct answer with probability at least 2/3.

Theorem 1. (Yao’s Minimaz Principle) R(f) = max, D,(f).

Proof. It is easy to see that for all distributions p, we have

R(f) = Du(f),

hence

R(J) 2 max Dy(f).

For the other direction, choose ¢ such that max, D, (f) < c¢. Consider the following 2 player zero-sum
game. Player 1 chooses a deterministic protocol P for f of cost ¢ (and whatever error), and Player
2 chooses an input (z,y). Both players make their choices in parallel, so that neither is aware of the
other’s choice.

The payoff for Player 1 is 1(p(y )= f(z,)-

Now, the fact that D,(f) < c for every distribution x implies that for every randomized strategy of
Player 2 (i.e., for every probability distribution p), Player 1 can obtain expected payoff 2/3 using



the protocol P of cost D,(f) < c¢. By the min-max theorem for zero-sum games, Player 1 has a
randomized strategy, with an expected payoff of 2/3 for every choice of inputs of Player 2. Now
note that a randomized strategy for Player 1 is a distribution over cost ¢ deterministic protocols, ie.,
a public coins protocol of cost at most ¢. Thus, there exists a public coin protocol of cost at most ¢
that is correct on every input with probability at least 2/3. Together with the definition of max,,(-)
we can conclude that

R(f) < max D, (f).

1.2 INDEX Problem with Product Distribution

Definition. The communication matrix Af of a Boolean functionf : X x Y — {0,1} is defined
such that the (x,y)-th entry equal to f(z,y).

Theorem 2. [7] If Alice and Bob are independent, i.e. p is a product distribution, then

max D, (f) =O(VC-dim of Ay)
product p

Remark 1. The reduction from Index is optimal for product distributions. Since for x and ¢ are
independent and uniformly distributed, jointly as p*, we have

Dy (f) = Q) £ max Dy(f) < max Dy(f) = R(J).

~ product,u

1.3 Indexing with Low Error
The INDEX problem with 1/3 error probability and 0 error probability both have Q(n) communication

complexity. But sometimes we expect to have a lower bound in terms of the error probability. So
we considering the Indexing on Large Alphabets problem:

1. Alice receives a binary string = € {0,1}"/? and wt(x) = n, Bob receives an integer j € [n/d];

2. Bob wants to decide if x; = 1 with error probability J.

The 1-way communication complexity is

log (n/é) = log (n—/é)n = Q(nlog(1/9)).
n n
Then consider the case where n =1,

1. Alice has a string x in {0,1}11/6} with exactly one coordinate j equal to 1
2. Bob has an integer i in {1,2,...,1/6}.
Let y be the underlying vector that the stream is run on, which is initialized to all Os. Suppose

the dimension of the vector y is at least 1/§. Then Alice creates the stream: y; < y; + 1, and
Bob creates the stream: y; < y; — 1. At the end of the stream, we have y = ¢; —¢;. If j = 1,



then any norm of y is 0. Otherwise, any norm of y is non-zero. So a norm estimation data stream
algorithm which succeeds with probability 1 — d, can solve the Indexing with low error problem
with probability 1 —é. By the log(1/0) communication lower bound for indexing with low error
shown above, we obtain a log(1/d) space lower bound for the data stream algorithm. It worth
noticing that this reduction only works if the dimension of the vector y is at least 1/d. For the case
when the dimension of y is smaller than 1/, [6] shows how to get a lower bound of log(1/§).

In the last lecture, we saw an {2(logn) bit lower bound for norm estimation from the Augmented
Indexing communication problem, and in the last lecture we saw an (¢~2) lower bound from the
Gap-Hamming communication problem. Since Indexing with Low Error gives an Q(log(1/4))
lower bound, in total we have an Q(logn + €2 +log(1/4)) lower bound, since the lower bounds add.
In fact it is known how to get a tighter lower bound of Q(e=2log(1/6)logn), that is, the three lower
bounds we showed in class actually multiply [6].

Sometimes reduction to product distribution may not necessarily be optimal, since

max D, (f) > max D,(f).
© productu

For example, consider the Set disjointness problem

1. Alice chooses a set S C {1,...,n}
2. Bob chooses a set T'C {1,...,n}

3. Output 1if SNT =10

It is known that for any deterministic protocol for solving the above problem has lower bound (n),
but for product distribution, maxproduct p Dp = Q2(v/nlogn) [2] [4].

1.4 Gap_(z,y) Problem and Direct Sums

The Gap,,(z,y) problem is described as:

1. Alice has z € {0,..., B}", Bob has y € {0,..., B}"
2. We are sure that |z — y|loo <1 or |2 —y|ec > B

3. Output 1 if | — y|eo < 1 and 0 otherwise

It is shown that the Gap,, (x,y) problem does not have a hard product distribution, but has a
hard distribution p = A" where the coordinate pairs (x1,y1), ..., (Zn, yn) are independent, and the
distribution A is

1. with probability 1 — 1/n, (x,y) random subject to |z — y|eo < 1

2. with probability 1/n, (z,y) random subject to |z — y|sc > B



Hence
n

p(z,y) = [T M@i,9)-

i=1

Therefore, in order to solve Gap,,(x,y) problem, we need to solve the single coordinate sub-problem
g for n times, where g is

1. Alice has J € {0,...,B}, Bob has K € {0,..., B}
2. We are sure that |J — K| <1lor|J— K| > B

3. Output 1 if |J — K| <1 and 0 otherwise

Define I1C(g) = infy, I(¢; J, K), where 1) ranges over all 2/3-correct 1-way protocols for g. This is
usually referred as the Direct Sum method.

Let IT be the message from Alice to Bob, concatenated with Bob’s output. For (X,Y) ~ pu, the
information cost of the protocol is

I(II; X,Y) ZI (X3, Y)| X i, Yei)
= ZH Xi,Yi) — H(X;, Yi| X<, Yei, 1)

=) I(T|X;,Y)).

So we only need to show that I(II; X;,Y;) > IC(g) for each i =1,...,n.

Now we choose a specific joint distribution of A\ [3], such that we always have | X — Y|, < 1.
It may be counterintuitive that A always has |X — Y|, < 1, but since II must be correct on

all inputs, the information measured with respect to A will still turn out to be large. Define
D= ((Plv‘/l)va(PnaVn)) = (P,V)n,

1. Pj; uniform on {Alice, Bob}
2. Vj uniform on {1,..., B} if P; is Alice, V; uniform on {0,..., B — 1} if P; is Bob

3. If P; is Alice, then Y; = V; and X is uniform on {V; — 1, V}}; If P; is Bob, then X; = V; and
Y is uniform on {V},V; + 1}

It is worth noticing that X and Y are independent conditioned on D. In this case, we have
I(IL X, Y[D) = Q(n)IC(g|(P,V)),

where IC(g|(P,V)) = infy, I(¢; J, K|(P,V)), 9 ranges over all 2/3-correct protocols for g. Notice
that for fixed P = Alice and V' = v, this is I(¢; K) where K is uniform on {v — 1,v}, and

1(1/1, K) 2 DJS(¢”U—1,”L)7 wv,v)-



Remark 2. Recall the properties for Hellinger Distance

L. Dys($o—1,0:%v,0) = h(Wv—1,0, Pu0);

- B2 (Y00, %0,8) = Q(1);

3. For 1-way protocol: g (m,out) = pa(m)qy m (out);
W2 (Yaps Yed) > 1/2[0 (Vabs Ya,d) + h* (Pebs Yed)]-

Since

[\

e~

[(1 — h?(Pap, Yaa)) + (1 — h*(ep; tea))]

\/pa Qb m(out) \/pa m)qq ;m(out) T \/pc Qb m(out \/pc m)qq m(OUt)]

N | =

m out

=) a();pc(m\/qb,m(out)qdym(out)

m,out

\/pa Qb m OUt)pc( )Qd,m (OUt)

m, out

=1- h2 <wa,b; wc,d)-

Based on the above properties, we have

1 1
(g’(P V)) 5 el I’E“’B}[DJS(wv—l,m wv,v)] + 5 vG{O,.I.E,B—l}[DJS(wU’m wv,v—‘rl)]
1 1
= 51}6{1, ,B}[ (% 11)77/}1) v)] 71}6{0 B 1}[ (7/}11 v7¢vv+1)]
/ / 2
:— |\/¢v lv — \/wvv Z | wv,v_ wv,v+1| ]
UE{l ..... ve{0,...,B—1}
r 2
1
> E UE{IE: 5 |\/¢’U—1,’U - \/wv,v’ + UE{OZB_I} |\/ wv,v Y wv,v+1|] (by Cauchy—Schwartz)

> r; Z |\/’¢v,v - \/1/)1)+1,v+1|

_Ue{ov'--vB_l}

> 471132 {\/1!}770_ \ ¥B,B :
> é [|\/¢0,0 - \/¢0,B|2 + |\/¢B,0 - \/ﬂ’B,Bﬂ

= ()

In summary, we get a (n/B?) lower bound for the Gap,,(x,y) problem. Moreover, we can get a
Q(n) lower bound for Set disjointness problem [3].

Remark 3. The Direct Sums are nice, but usually a problem cannot be split into simpler subprob-
lems. For example, there is no known embedding step in Gap-Hamming problem.



2 Nonnegative Matrix Factorization

2.1 Problem Setup

Main Question:
Given A € R™ ™ and integer k > 1, is there an algorithm that can determine if there exist two
matrices U, VT € R™F such that

A=UV, U>0,V=>0.
Or are there any hardness results?
Remark 4. The main question is equivalent to computing the nonnegative rank of A
Definition. For a matrix A € R™*™ the nonnegative rank of A is defined as
q
ranky (A) = min{q : ZRi =A, rank(R;))=1,i=1...,q}.
i=1
Remark 5. By definition, it is easy to conclude that
rank(A) < ranky(A) < min{m,n}.

Remark 6. Determining whether rank(A) = rank, (A) is NP-hard. [10]

2.2 Main Idea

Polynomial System Verifier:
Given a polynomial system P(z) over the real numbers, with

e v: # of variables, x = (z1,..., %),
e m: # polynomial constraints f;(z) >0,i=1,...,m,
e d: maximum degree of all polynomial constraints,

e H: the bitsizes of the coefficients of the polynomials,

then in (md)°?®poly(H) time, we can decide if there exists a solution to polynomial system P.

Therefore we can

1. Write ming yrecgnxk rs0,vs0 [UV — A||F: as a polynomial system that has poly(k) variables
and poly(n) constraints and degree;

2. Use polynomial system verifier to solve it



2.3 Algorithms and Bounds

We can formulate the problem as follows

Given: A € R™", k € N*
Question: Are there matrices U, VT € R™ ¥ such that

(NMF)
A=UV,U>0,V>0
Output: Yes or No
There is a way of reducing (NMF)) to the following k-Sum problem [I], which is defined as
Given: a set of n values {s1, s9,..., S, }each in the range [0, 1]
Question: If there is a set of £ numbers that sum to exactly k/2 (k-SUM)

Output: Yes or No

2.4 Upper Bounds

1. In [1], we can solve (NMF) in n2%" time.
2. In [8], we can solve (NME) in 20¢+*)nO**) time.

2.5 Lower Bounds

Exponential Time Hypothesis: states that 3-SAT (or any of several related NP-complete
problems) cannot be solved in subexponential time in the worst case.

By [9], we can conclude the following claim:

Claim. Assume that 3-SAT on n variables cannot be solved in 20 time, then (k-SUM]) cannot
be solved in n®®*) time.

So under the Exponential Time Hypothesis [5], (NMF) requires at least n2(*).

2.6 Open Problem

For (NMF]) the upper bound is nO**) while the lower bound is n®*). Can we find a tight bound?
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