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1 Some Other Distance Measures

Definition (Kullback-Leibler Divergence). For two discrete probability distributions P and Q, the
Kullback-Leibler Divergence from Q to P is defined to be

KL(P,Q) =
∑

i

Pi log
(
Pi

Qi

)
.

Notice that the KL-divergence is asymmetric and can be infinite.

Definition (Jensen-Shannon Distance). For two discrete probability distributions P and Q, the
Jensen-Shannon Distance between P and Q is defined to be

JS(P,Q) = 1
2 (KL(P,R) + KL(Q,R)) ,

where R = (P +Q)/2 is the average distribution.

Notice that the JS distance is symmetric and always finite. Furthermore, we can use the JS distance
to lower bound information. Formally, the following inequality holds.

Proposition 1. Suppose X and B are (possibly dependent) random variables and B is a uniform
bit, then we have

I(X;B) ≥ JS(X | B = 0, X | B = 1).

Meanwhile, we have the following relations between distance measures.

Proposition 2. For two discrete probability distributions P and Q,

1. JS(P,Q) ≥ h2(P,Q);

2. h2(P,Q) ≥ D2
T V (P,Q).

3. If one can distinguish P from Q with a sample with probability 1
2 + δ/2, then

DT V (P,Q) ≥ δ.

2 Lower Bound of Communication Complexity of INDEX

2.1 Problem Setting of INDEX

A randomized 1-way communication protocol of INDEX is consisted of the following stages.
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1. Alice receives a binary string x ∈ {0, 1}n, Bob receives an integer j ∈ {1, 2, . . . , n}.

2. Alice sends a single message M to Bob. Here M depends only on x and Alice’s random coins.

3. Bob outputs b, which is his guess of xj . Here b depends only on M and Bob’s random coins.

We say a protocol is correct if for any x ∈ {0, 1}n and j ∈ [n],

P[b = xj ] ≥ 2
3 .

2.2 The Lower Bound

Theorem 1. For a correct randomized 1-way communication protocol of INDEX, |M | = Ω(n).

Proof. Consider a uniform distribution on all possible x ∈ {0, 1}n. For any j, denote x′j to be Bob’s
guess of xj . Since P[xj = x′j ] ≥ 2

3 and xj → M → x′j is a Markov chain, by Fano’s inequality, we
have for all j,

H(xj |M) ≤ H
(2

3

)
+ 2

3(log2 2− 1) = H

(1
3

)
.

By the chain rule,

I(x;M) =
∑

i

I(x;M | x<i)

=
∑

i

H(xi | x<i)−H(xi |M,x<i).

Since different coordinates of x are independent, we have H(xi | x<i) = 1. We also have H(xi |
M,x<i) ≤ H(xi |M) as conditioning will not increase entropy. Thus,

|M | ≥ H(M) ≥ I(x;M) ≥ n−
∑

i

H(xi |M) ≥ n−H
(1

3

)
n.

�

Remark 1. The lower bound holds for any constant success probability. More specifically, for a
protocol which succeeds with probability at least 1− δ, we have

|M | ≥ (1−H(δ))n.

Moreover, this lower bound is tight.

Remark 2. The lower bound holds even if Alice and Bob have unlimited amount of public random
coins.

Remark 3. The lower bound holds even for the Augmented-INDEX problem, which is a (seemingly)
easier version of INDEX. In the Augmented-INDEX problem, Bob receives not only j but also
x1, x2, . . . , xj−1. The lower bound still applies since by Fano’s inequality, if the protocol succeeds
with probability at least 1− δ, then we have

H(xj |M,x1, x2, . . . , xj−1) ≤ H(δ).

Thus,
|M | ≥ H(M) ≥ I(x;M) ≥ n−

∑
i

H(xi |M,x1, x2 . . . , xi−1) ≥ (1−H(δ))n.
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2.3 Applications of the Lower Bound

2.3.1 Lower Bound of the Distinct-Elements Problem

The goal of the Distinct-Elements problem is that, given a1, a2, . . . , am ∈ [n] in the streaming model,
count the (exact) number of distinct elements in the stream.

Theorem 2. Any algorithm for Distinct-Elements has space complexity Ω(n).

Proof. Suppose there exists an algorithm A for Distinct-Elements with o(n) space complexity. We
show that based on A, we can construct a protocol for the INDEX problem with o(n) communication
complexity, which contradicts Theorem 1.

1. After Alice receives x, she runs A with input i1, i2, . . . , ir for all ij where xij = 1. Then Alice
sends a message M to bob, where M is the current state of A. Since the space complexity of
A is o(n), the size of the message Alice sent is also o(n).

2. After Bob receives j and M , he runs A with M as the initial state and j as the input.

3. Bob outputs 1 if the number of distinct elements remains unchanged after inputing j, and 0
otherwise.

To see the correctness of this protocol, if xj = 1, then j is already in the stream, and the number
of distinct elements will remain unchanged after Bob adds j into the stream. If xj = 0, then the
number of distinct elements will increase by 1 after Bob adds j into the stream. Thus, Bob always
outputs the correct answer. �

2.3.2 Lower Bound for Estimating Norms

We have shown in Lecture 7 that estimating 1-norm and 2-norm of the input stream can be solved
with space complexity O

(
log n

ε2

)
. Here we show an Ω(logn) lower bound for the space complexity

of estimating p-norms (for p > 0) with constant approximation. For simplicity we assume the
approximation ratio is at most 2.

Proof. Suppose there exists an algorithm A for estimating p-norm with o(logn) space complexity.
We show that based on A, we can construct a protocol for the Augmented-INDEX problem with
o(logn) communication complexity when Alice receives x ∈ {0, 1}log n and Bob receives j ∈ [logn],
which contradicts Theorem 1.

1. After Alice receives x, she runs A with input w where w is vector with a single coordinate
equal to

∑n
i=1 10n−ixi. Then Alice sends a message M to bob, where M is the current state

of A. Since the space complexity of A is o(logn), the size of the message Alice sent is also
o(logn).

2. After Bob receives j, x1, x2, . . . , xj−1 and M , he runs A with M as the initial state and w′ as
the input, where w′ is a vector with a single coordinate equal to −

∑j−1
i=1 10n−ixi.
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3. Bob outputs 1 if the final estimated norm is at least 1
2 · 10n−j and 0 otherwise.

To see the correctness of this protocol, if xj = 1, then the estimated norm is at least 1
2 · 10n−j . If

xj = 0, then the estimated norm is at most 2 · 10n−j−1. Thus, Bob will always output the correct
answer. �

We can also prove an Ω
(

1
ε2

)
lower bound for the space complexity of estimating norms based on the

communication complexity of Gap-Hamming problem. In the Gap-Hamming problem, Alice receives
a string x ∈ {0, 1}n and Bob receives y ∈ {0, 1}n. It is guaranteed that ∆(x, y) > n/2 +

√
n or

∆(x, y) < n/2, where ∆(·, ·) denotes the Hamming distance. The goal is to distinguish these two
cases.

In [2, 4, 3] it has been proved that the communication complexity of randomized 1-way communication
protocol is Ω(n). In [1], Chakrabarti and Regev further proved that the same bound also holds for
2-way communication. Here we follow the approach in [3] and prove the communication complexity
of Gap-Hamming based on the communication complexity of INDEX.

Suppose there exists a protocol A for Gap-Hamming with o(n) space complexity. We show that based
on A, we can construct a protocol for the INDEX problem with o(n) communication complexity,
which contradicts Theorem 1.

1. Alice and Bob first agree on n independent random binary vectors r1, r2 . . . , rn ∈ {0, 1}n by
using their public random coins.

2. After Alice receives x ∈ {0, 1}n, she calculates a ∈ {0, 1}n where for any k ∈ [n],

ak = Maji such that xi = 1r
k
i ,

where Maj denotes the majority function.

3. After Bob receives j, he calculates b ∈ {0, 1}n, where for any k ∈ [n],

bk = rk
j .

4. Alice and Bob invokes the protocol A with a and b as input. If ∆(a, b) > n/2 +
√
n then they

output 0. Otherwise they output 1.

To see the correctness of this reduction, we first state the following lemma.

Lemma 1. For any k ∈ [n],

P[ak = bk] =
{1

2 if xj = 0
1
2 + Ω(1/

√
n) if xj = 1

.

With Lemma 1, the correctness of the reduction follows directly from an application of the Chernoff
bound. The intuition behind Lemma 1, is that when xj = 0, ak and bk are independent random
bits, and thus the probability that ak equals bk is 1

2 . However, when xj = 1, notice that bk is the
majority of at most n independent random bits, and one of these random bits is ak in this case.
Thus, the probability that ak equals bk will be larger than 1

2 due to the bias.
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To bound the probability that ak equals bk when xj = 1, we assume bk is the majority of n̂1

independent random bits (and one of them is ak). W.l.o.g., we assume n̂ is odd.

In this case, it is clear that

P[ak = bk]− P[ak 6= bk] =
(

n̂− 1
(n̂− 1)/2

)(1
2

)n̂−1
= Θ

( 1√
n̂

)
by Stirling’s formula. Since n̂ ≤ n,

P[ak = bk] = 1
2 + Θ(1/

√
n̂) = 1

2 + Ω(1/
√
n).
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1Also notice that n̂ = |{i | xi = 1}|.
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