
CS 15-859: Algorithms for Big Data Fall 2017

Lecture 8 - 2 — 10/26/2017
Prof. David Woodruff Scribe: Anish Sevekari

These notes continue the discussion on `2 heavy hitters. At this point, we can approximate xi for
all i simultaneously up to an additive error of O

(
|X|2√

B

)

Tail Guarantee for `2 heavy hitters

We can approximate each xi simultaneously up to an additive factor of O
(
|X|2√

B

)
. But if one of the

xi is much larger than others, then we get very bad approximations for all other xi. One way to fix
this is to argue that with high probability, none of the large value end up in same bin as xi, then
we can get a better approximation for xi.

Theorem 1 (Tail Guarantee for CountSketch). CountSketch approximates every xi simultaneously

up to an additive error of O
(∣∣X−B/4

∣∣
2√

B

)
where X−B/4 denotes X after 0-ing out the top B/4 entries

of X in magnitude.

Proof. For a fixed i, we claim that with probability 3/4, none of the top B/4 entries hash into the
same bucket as xi. For any j, probability that xj hashes into the same bin as xi is 1/B. Taking the
union bound over top B/4 entries, probability that at least one of them colloid with xi is at most
1/4, which gives us the required probability bound.

Now we can condition on hash function satisfying this condition, and analyze the estimator
X̂i = σiCh(i).

X̂i = xi +
∑
i′ 6=i

i′ not in top B/4

σiσi′xi′ +
∑
i′ 6=i

i′ in top B/4

σiσi′xi′

Note that the second term is 0 after conditioning on hast function. And we can analyze the first
time using just pairwise independence. Also, the top B/4 terms don’t contribute to the variance of
X̂i. Therefore,

E[X̂i] = xi

and

E[X̂i
2] ≤

∣∣∣X−B/4

∣∣∣
2√

B

Therefore, with constant probability, we get an additive error of O
(∣∣X−B/42

∣∣
√

B

)
for each xi. We can

repeat the process for O(logn) times and take the median to get this error bound with 1−1/ poly(n)
probability. And then union bound gives us the tail guarantee for `2 heavy hitters.

Remark. If x is B/4 sparse, then we can recover entire x accurately with high probability!

�

1

Finding top k heavy hitters

Consider a complete binary tree with height lgn. There are 2i nodes in ith level. For each node in
ith level, we can associate a subset of [n] of size n/2i, with the same i-bit prefix. Prefixes associated
to nodes are such that if prefix corresponding to a node is p1 . . . pi then the prefix associated to its
children are p1 . . . pi0 and p1 . . . pi1.

For each node, we keep track of 2-norm of all the entries corresponding to that node. Algorithm to
find top k heavy hitters goes as follows:

• Start at level with 2k nodes. Hash these 2k nodes into]Oh(k) buckets and use `2 heavy hitters
algorithm to find k nodes that have largest 2-norm. We can hash O(log k) times independently
to the probability guarantee.

• In the next level, we have to look at only the 2k children of top k nodes that we found in
previous level, and repeat the same procedure.

• We can repeat the process until we hit bottom-most level, which gives us the top k heavy
hitters.

Main advantage is that at each point, we are running the `2 approximation algorithm for only O(k)
nodes instead of O(n) nodes. And repeat this at most O(lgn) times. Therefore, we get a factor of
O(lgn) instead of O(n) for the time complexity.
Remark. Each update also take O(lgn) time since we have to update lgn nodes, corresponding to
all of the prefixes.

`1 heavy hitters

Recall: `1 guarantee:

• output a set of numbers j such that |xj | ≥ φ|x|1
• the set should not contain any j with |xj | ≤ (φ− ε)|x|1

`2 guarantee:

• output a set of numbers j such that x2
j ≥ φ|x|

2
2

• the set should not contain any j with x2
j ≤ (φ− ε)|x|22

Why care about `1 guarantee

`2 guarantee implies `1 guarantee, since

|xj | ≥ φ|x|1
⇒x2

j ≥ φ2|x|21 ≥ φ
2|x|22

But, `1 guarantee can be solved deterministically, while there is a lower bound for `2 guarantee.

2

Deterministic `1 heavy hitters

Definition. An s× n matrix S is called ε-incoherent if

• for all column Sj of S, |Sj |2 = 1

• for all pairs i and j, |〈Si, Sj〉| ≤ ε

• entries of S can be specified with O(logn) bits.

Geometrically, columns of S are unit vectors which are almost orthogonal. If we have such a matrix
S, we can maintain Sx using O(s logn) space. Further, we claim that for any i, X̂i = ST

i Six
computes xi with ε|x|1 error.

Proof.

X̂i =
n∑

j=1
〈Si, Sj)〉xj

= |Si|22xi ±
∑
j 6=i

|〈Sj , Si〉||xj |

= xi ± ε|x|1

�

Then, we can figure out which i satisfy `1 guarantee.

Existence of ε-incoherent matrices

Consider prime q = Θ((logn)/ε). Let d = εq. Note that d = O(logn) We consider polynomials
P1, . . . , Pn over the field Fq of degree less than or equal to d. There are qd − 1 such polynomials, so,
we have to choose constants the Θ notation such that qd > n.

Let s = q2. Divide rows into q groups containing q rows each. We associate Pi with ith column. In
jth group, the ith column has exactly one non-zero entry. The Pi(j)th entry in ith column is 1/√q.
Note that norm of each column is 1, since it contains exactly q non-zero entries, each of which is
1/√q. Further, if two columns i and j share more d common entries, then Pi and Pj agree on more
than d values! Since they have degree less than or equal to d, they must be same! But we chose all
Pi’s to be distinct. Therefore, this cannot happen. Therefore, for any i and j,

|〈S1, S2〉| ≤ d · 1/q ≤ ε

This proves that all matrices in this family are ε-incoherent.

Estimating Number of non-zero entries

Definition. |x|0 = |{i such that xi 6= 0}|

3

We want to find an ε approximation to |x|0, that is, a output a number Z such that

(1− ε)Z ≤ |x0| ≤ (1 + ε)

Sparse Case

Suppose |x|0 = O
(

1
ε2

)
. Then we can use k-sparse vector recovery algorithm to get number of

non-zero entries exactly. Another way is to use CountSketch to recover non-zero entries of x.

Reducing error in 2-approximation

Suppose we can find Z such that Z ≤ |x|0 ≤ 2Z then we can increase accuracy by sampling. Let
p = 100

Zε2 . We sample each coordinate independently by probability p. Let Yi be random variable
indicating if ith coordinate was sampled or not. Let y be x restricted to only those coordinates with
Yi = 1

E[|y|0] =
∑

i
xi 6=0

E[Yi] = p|x|0 >
100
ε2

Var[|y|0] =
∑

i
xi 6=0

Var[Yi] ≤
200
ε2

Therefore, Chebyshev’s inequality gives us a bound:

Pr
[
||y|0 − E[|y|0]| > 100

ε

]
≤ 1

50

Therefore, we get a relative error of ε in |y|0 with probability 49/50. Multiplying by 1/p, we can get
x0 with an relative error of ε

Algorithm for the general case

We cannot get a 2-approximation to |x|0 as of yet. But, if we go through all powers of 2 less than n,
one of them satisfies the 2-approximation property. We can do the following:

• guess Z in powers of 2. There are O(logn) of them.

• for ith guess, we can sample probability p = min
(
1, 100

2iε2

)
• We do a nested sampling instead of sampling every time, so [n] = S0 ⊇ S1 ⊇ · · · ⊇ Slog n

• Run the previous algorithm to estimate |x|0 for each i.

One of the Z’s satisfy Z ≤ |x|0 ≤ 2Z and for that i, we will get an ε approximation for |x|0. So, we
are left with guessing which one works.

Claim. Largest Z = 2i for which 400
ε2 ≤ |y|0 ≤

3200
ε2 works!

4

Proof. Let yi denote vector x after sampling coordinates in set Si. Note that E[|yi|0] = |x|0
2iε2 .

Therefore, note that E[|yi|] is strictly decreasing, and so is |yi|0, since we do a nested sampling. Let
i′ be such that

800
ε2 ≤ E[|yi′ |0] ≤ 1600

ε2

then by Chebyshev’s inequality,
400
ε2 ≤ |yi′ |0 ≤

3200
ε2

with probability at least 49/50. Similarly, following holds for i′ + 3

100
ε2 ≤ E[|yi′+3|0] ≤ 200

ε2

then
|yi′+3|0 ≤

400
ε2

with probability at least 49/50. Lets assume that both of these events hold, which happens with
probability 48/50. Note that i is the largest index such that 400

ε2 ≤ |yi|0 ≤
3200
ε2 . Sunce i′ also satisfies

this, i ≥ i′. But, since |yi+3| ≤ 400
ε2 we get that i′ + 3 > i ≥ i′, therefore, i can take only 3 different

values. For each of these 3 values, |yi|0 = (1± ε)E[|yi|0] with probability 49/50. Again, taking an
union bound, with probability 47/50, i gives us an ε approximation for |x|0 for all the three values
of i. Therefore, with probability at least 1− 2/50− 3/50 = 9/10, we get an ε approximation to |x|0
for the chosen value of i. �

Space Complexity

Since we are using k-sparse recovery algorithm for k = O
(

1
ε2

)
, it takes O

(
log n

ε2

)
space. We repeat

this O(logn) many times, so total space complexity is O
(

(log n)2

ε2

)
, ignoring the randomness.

For sampling and randomness, we can keep a pairwise independent hash function h : [n] → [n],
and pick j in Si if and only if h(j) ≤ n

2iε2 . This in fact gives us the nested sampling as required.
Further, probability bound is obtained using Chebyshev’s inequality, which requires only pairwise
independence. The hash function can be stored using O(logn) bits.

We can improve space complexity to O

 logn
(
log

(
1
ε

)
+ log logn

)
ε2

. This improvement comes

from decreasing complexity of k-sparse recovery counters. In the levels that we care about, there are
only O(1/ε2) counters, each counter has O(logn) bits. Instead, we can store the counter modulo a
prime q that does not divide the counter value, since we are only going to check if it is non-zero.
There are at most O

(
log n

ε2

)
which can divide any of these counters. Therefore, if we choose a random

prime q = O
(logn log logn

ε2

)
then with high probability, it does no divide any of the counters.

We can store the entire sparse recovery structure modulo q, which takes O
(
log logn+ log 1

ε

)
bits

instead of O(logn)

5

	Tail Guarantee for 2 heavy hitters
	Finding top k heavy hitters
	1 heavy hitters
	Why care about 1 guarantee
	Deterministic 1 heavy hitters
	Existence of -incoherent matrices

	Estimating Number of non-zero entries
	Sparse Case
	Reducing error in 2-approximation
	Algorithm for the general case
	Space Complexity

