
CS 15-859: Algorithms for Big Data Fall 2017

Lecture 8-1 — 10/26/2017
Prof. David Woodruff Scribe: Sahil Singla

1 Announcements

• Course projects suggestions have been posted online. Students should work in groups of size
at most 2 (special permission needed otherwise).

• Last one-two lectures of the course will be project presentations.

• HW-4 will be just a project update.

• Send a 1 page project summary (project idea and group members) along with HW-3.

2 `p-Norm Estimation for p > 2 (continued)

Consider a stream of addition/subtraction updates to an n dimensional vector y, while always
ensuring that y ∈ [−M,M]n (the turnstile model). The `p-norm estimation problem is to estimate
‖y‖p using o(n) space (assume p = O(1)). In this section we present a result due to Andoni [1] that
finds an O(1)-approx to ‖y‖p using Õ

(
n

1− 2
p

)
space. This bound is tight up to poly logn factors.

2.1 Recap

Our sketch is of the form P ·D where P is a s× n CountSketch matrix and D is a n× n diagonal
matrix diag

(
1

E
1/p
1
, . . . , 1

E
1/p
n

)
with Ei being an exponential random variable of rate 1. Using the

fact that minimum of independent exponential random variables has an exponential distribution, in
the last lecture we prove that w.p. at least 4/5, we have

‖y‖pp
10 ≤ ‖Dy‖p∞ ≤ 10‖y‖pp. (1)

Hence, ‖Dy‖∞ is a good estimator of `p-norm. However, the difficulty is that we cannot store Dy
as its size is n. Using a CountSketch matrix P lets us reduce the dimension of Dy, but we need to
ensure ‖PDy‖∞ ≈ ‖Dy‖∞.

Condition on D satisfying Eq. (1). To prove ‖PDy‖∞ ≈ ‖Dy‖∞, the plan is to apply Bernstein’s
concentration bound. In the last lecture we show that the random variable (PDY)i satisfies
E[(PDY)i] = 0 and E[(PDY)2

i] = O(1/s) · (n1− 2
p
‖y‖2

p). Now if we naively apply Bernstein’s bound
then to bound the noise we need a small bound on K = ‖DY ‖∞, which we know does not hold as
this is what we are trying to estimate. In today’s lecture we will show that not many coordinates
j have a large |(DY)j | = |yj |

E
1/p
j

(≥ Ω(‖y‖p

logn). Hence, if we condition on these coordinates going to

distinct buckets then the remaining entries are small and we can get good concentration bounds.

1

2.2 Proving ‖PDy‖∞ ≈ ‖Dy‖∞

Condition on D satisfying Eq. (1). Let L denote the set of large coordinates j s.t. Rj := |(DY)j | =
|yj |
E

1/p
j

≥ α·‖y‖p

logn , where α is a small constant. We call the remaining coordinates small.

Claim 1. With probability at least 9/10, the number of large coordinates |L| is at most O(logp n).

Proof. The probability that a particular coordinate j belongs to L is

P

 |yj |
E

1/p
j

≥ α · ‖y‖p
logn

 = P
[|yj |p

αp · ‖y‖pp
· logp n ≥ Ej

]

= 1− exp
(−|yj |p
αp · ‖y‖pp

· logp n
)

≤ |yj |p

αp · ‖y‖pp
· logp n.

Since
∑
j |yj |p = |y|pp, the expected number of large coordinates is O(logp n) (assuming p and α are

O(1)). Now by Markov’s inequality, we get |L| = O(logp n) with probability ≥ 9/10. �

Since the number of buckets s = Õ(n1− 2
p) is large, w.h.p. all O(logp n) large coordinates belong to

different buckets (recollect, p = O(1)). Conditioning on this event, we can assume that all other
coordinates in a bucket are small, i.e., K ≤ α·‖y‖p

logn . Applying Bernstein’s bound for each bucket,

P
[
(PDy)smalli ≥ ‖y‖p100

]
≤ C

(
exp(−Θ(logn)) + exp

(
−c logn

100α

))
≤ 1

n2 .

Hence by union bound over all the buckets, we get that no bucket has the signed sum of small
entries more than ‖y‖p/100.

Finally, to complete the proof, we condition on Eq. (1), on |L| ≤ O(logp n), on every bucket
containing at most one coordinate from L, and on every bucket having signed sum of small DY
entries at most ‖y‖p/100. By union bound, all of these events simultaneously happen w.p. at least
2/3. In this case, we have

‖PDy‖∞ ≤ ‖Dy‖∞+ ‖y‖p100 ≤ 101/p‖y‖p + ‖y‖p100 & ‖PDy‖∞ ≥ ‖Dy‖∞−
‖y‖p
100 ≥

‖y‖p
101/p −

‖y‖p
100

and we can output ‖PDy‖∞ to obtain an O(1) approximation to ‖y‖p. The total space consumed
is Õ(s) = Õ(n1− 2

p).

3 Heavy Hitter

Consider again a sequence of addition/deletion updates to a vector y in the turnstile model. We
wish to find all the “large” entries in y in o(n) space. We need to be careful in defining “large”
because if we define it to be the largest entry, i.e. the `∞ norm, then from previous section we know
that this requires Ω(n) space. In this section we output all heavy hitter coordinates j that satisfy
|xj | ≥ φ · ‖x‖p, and no coordinate j with |xj | ≤ (φ− ε) · ‖x‖p, where p ∈ {1, 2} and φ, ε are some
constants. Most of these results appeared in the work of Charikar et al. [2].

2

3.1 `2 vs `1 Error

In this subsection we argue why finding all `2-heavy hitters is more difficult than finding all `1-heavy
hitters. As an example, consider x = {

√
n, 1, 1, . . . , 1}. For φ being a small constant, observe that

there are no `1-heavy hitters but the first coordinate is an `2-heavy hitter.

Claim 2. If j is a φ `1-heavy hitter then it’s also a φ2 `2-heavy hitter.

Proof. By definition we know |xj | ≥ φ · ‖x‖1. Then, x2
j ≥ φ2 · ‖x‖21 ≥ φ2 · ‖x‖22. �

Hence, we will mostly focus in designing randomized algorithms to achieve `2 guarantees. Although
this implies randomized algorithm for `1 guarantees, we remark that `1 heavy hitters can be also
found deterministically, which we will discuss later [3]. Such deterministic guarantees are not
possible for `2-heavy hitters.

3.2 Intuitive Examples

Consider an example where you are promised that at the end of the stream only one coordinate
xi = n and every other coordinate is in {0, 1}. How would you find i? Consider a simpler question,
how would you find if i is odd or even?

To answer the above latter question, we can maintain separately the sum of all the odd and all the
even coordinates. Since xi = n, the sum of coordinates containing xi will be larger (as the other
sum is at most n/2) and we can find the parity of i. Note that this took only O(logn) space and is
equivalent to finding the last bit of i in its binary representation. One can now extend this idea to
find each of the logn bits for i. To find the j’th bit, we keep track of the sum of all coordinates
with j’th bit 0 and all coordinates with j’th bit 1. The set with the larger sum of coordinates gives
the j’th bit. The total space is O(log2 n).

Next, consider an example where you are promised that at the end of the stream only one coordinate
xi = 100

√
n log logn and every other coordinate is in {0, 1}. How would you find i? The previous

proof does not work as the now xi is not large enough to make the sum of other coordinates
insignificant. We answer the simpler question of finding the parity of i as the arguments similar
to the previous example extend this to finding every bit of i. The crucial idea is that instead of
maintaining the sum of all the odd and all the even coordinates, we multiply each coordinate with a
random ±1, w.p. half each, and then maintain the sum of all the odd and all the even coordinates.
We output the parity of i corresponding to the sum of coordinates with the higher magnitude. The
reason that this works is that the noise due to random plus-minus small coordinates will be O(

√
n)

w.h.p., which is insignificant when added to xi. The additional
√

log logn factor is given so that we
can take a union bound over all the logn coordinates.

3.3 Using CountSketch

The idea of using a random plus-minus sign in the above example indicates using the CountSketch
matrix. Hence we randomly partition each coordinate into one of B buckets, where bucket j is
{i : h(i) = j}, and maintain cj =

∑
i:h(i)=j xi · σi for every bucket j. Observe that σi · ch(i) is an

unbiased estimator for xi. This is because E[σi · ch(i)] = σi ·
∑
i′:h(i)=h(i′) σi′xi′ = xi. Our algorithm

3

is to independently repeat this hashing scheme O(logn) times and for every i output the median
of the logn estimators for xi. We argue that w.h.p. this method finds xi ± ‖x‖2

B , which suffices to
output all heavy-hitters (we set B as a function of φ, ε). The remaining proof bounds the noise in
our estimators.

For bucket i, the noise is given by σi ·
∑
i′ 6=i:h(i′)=h(i) σi′xi′ . Its mean is zero and its variance is

E


σi · ∑

i′ 6=i:h(i′)=h(i)
σi′xi′

2
 = E


 ∑
i′ 6=i:h(i′)=h(i)

σi′xi′

2
 ≤ ‖x‖22

B
. (2)

Hence, by Chebyshev’s inequality, with constant probability the noise in the bucket is O
(
‖x‖2√
B

)
in magnitude. Since we estimate xi using O(logn) independent estimates, w.h.p., the median is
xi ±O

(
‖x‖2√
B

)
. Taking union bound over all the n coordinates, we can simultaneously estimate all

of them up to ±O
(
‖x‖2√
B

)
, which gives us all the heavy-hitter coordinates.

We next improve the above result slightly to argue that we can simultaneously estimate every
coordinate xi to ±O

(‖x−B/4‖2√
B

)
, where x−B/4 is vector x with its largest (in magnitude) B/4

coordinates zeroed. This is useful for examples such as x = (n2, n, 1, 1, . . . , 1). Although the first
coordinate is primarily the only one that contributes in the `2 norm, we would also like to output
the second coordinate as a heavy hitter because it’s much larger than all the remaining ones.

To prove this stronger result of ±O
(‖x−B/4‖2√

B

)
error in the estimate of xi, consider any coordinate i.

We observe that with probability at least 3/4 none of the top B/4 coordinates of x land in the same
bucket as xi. In these cases only coordinates not in the top B/4 contribute in the noise variance for
that bucket (see Eq. (2)). Hence the previous analysis gives an error of ±O

(‖x−B/4‖2√
B

)
.

References

[1] Andoni, Alexandr. "High frequency moments via max-stability." Acoustics, Speech and Signal
Processing (ICASSP), 2017 IEEE International Conference on. IEEE, 2017. APA.

[2] Charikar, Moses, Kevin Chen, and Martin Farach-Colton. “Finding frequent items in data
streams.” Automata, languages and programming (2002): 784-784.

[3] Nelson, Jelani, Huy L. Nguyen, and David P. Woodruff. "On deterministic sketching and
streaming for sparse recovery and norm estimation." Linear Algebra and its Applications 441
(2014): 152-167.

4

	Announcements
	p-Norm Estimation for p>2 (continued)
	Recap
	Proving "026B30D PDy"026B30D "026B30D Dy"026B30D

	Heavy Hitter
	2 vs 1 Error
	Intuitive Examples
	Using CountSketch

