CS 15-859: Algorithms for Big Data	Fall 2017	
Lecture $7-2-10 / 19 / 2017$		
Prof. David Woodruff		Scribe: Aditya Krishnan

For context, these notes continue after the discussion on 1-Norm estimators, 2-Norm estimators and other canonical problems in the Turnstile streaming model.

1 p-Norm Estimators

The setting under consideration is the Turnstile streaming model where we have some vector \vec{x} to which updates arrive as a stream. Our goal is to estimate $\|\vec{x}\|_{p}$ where the vector $\vec{x} \in$ $\{-M, \ldots 0, \ldots, M\}^{n}$ for some $M \in \mathbb{N}$.

1.1 Estimating for small p where $0<p<2$

Using the techniques seen to estimate the 1-Norm in the Turnstile model, we can use similar techniques to estimate the p-Norm for $0<p<2$. Recall that 1-Norm estimation and 2-Norm estimation crucially used distributions (Cauchy and Gaussian respectively) in their sketches that were norm preserving. p-Norm preserving distributions are known as p-stable distributions. Specifically,

Definition. A real valued distribution \mathcal{D} is called p-stable if for random variables x, x_{1}, \ldots, x_{n} that are i.i.d from \mathcal{D} and real values $a_{1}, \ldots, a_{n} \in \mathbb{R}$ we have the following property:

$$
a_{1} x_{1}+\cdots+a_{n} x_{n} \sim\|a\|_{p} x
$$

p-stable distributions exists for all $p \in(0,2]$ but not for $p>2$. Using p-stable distributions, one can perform p-Norm estimation in a similar fashion to 1 -Norm estimation for $p \in(0,2]$. It is also known that one can sample from p-stable distributions efficiently and that one can discretize them and construct sketching matrices consisting of p-stably distributed random variables with limited independence.

1.2 Estimating for $p>2$

We will use a sketch and sample technique to estimate larger norms but since we don't have p-stable distributions, our sketch matrices need to rely on different distributions that capture the norm. Additionally, for $p>2$, there is a $\Omega\left(n^{1-\frac{2}{p}}\right)$ space complexity lower bound in the Turnstile streaming model ${ }^{1}$. We will now discuss a $\tilde{O}\left(n^{1-\frac{2}{p}}\right)$ space algorithm for p-Norm estimation when $p>2$.

First, we must perform a seemingly unmotivated digression into exponential random variables.

[^0]
2 Exponential random variables and their stability

Definition. An exponential random variable $\boldsymbol{X}(\lambda)$ with $\lambda \in \mathbb{R}^{+}$has the following PDF given by $f_{\boldsymbol{X}}$ and CDF given by $F_{\boldsymbol{X}}$

$$
f_{\boldsymbol{X}(\lambda)}(x)=\lambda e^{-\lambda x} \quad F_{\boldsymbol{X}(\lambda)}(x)=1-e^{-\lambda x}
$$

Let us refer to $\boldsymbol{X}(1)$ as a standard exponential distribution, and from now on when we refer to an exponential without its parametrization (such as \boldsymbol{X}) we shall assume this is referring to a standard exponential.
Fact 1. For a scalar $t \geq 0$, the distribution corresponding to $t \boldsymbol{X}(\lambda)$ is the same as $\boldsymbol{X}\left(\frac{\lambda}{t}\right)$

2.1 How stable are they?

Let E_{1}, \ldots, E_{n} be independent exponential random variables, let $y \in \mathbb{R}^{n}$ be a vector and let $p \in \mathbb{R}$. We then investigate the distribution $q=\min \left(\frac{E_{1}}{\left|y_{1}\right|^{p}}, \ldots, \frac{E_{n}}{\left|y_{n}\right|^{p}}\right)$. To do so, let us calculate the CDF $F_{q}(x)$ of q.

$$
F_{q}(x)=1-\operatorname{Pr}[q>x]=1-\operatorname{Pr}\left[\forall i, \frac{E_{i}}{\left|y_{i}\right|^{p}} \geq x\right]
$$

By independence of E_{1}, \ldots, E_{n}

$$
=1-\prod_{i=1}^{n} \operatorname{Pr}\left[\frac{E_{i}}{\left|y_{i}\right|^{p}} \geq x\right]
$$

By Fact 1 we have

$$
\begin{aligned}
& =1-\prod_{i=1}^{n} \operatorname{Pr}\left[E_{i}\left(\left|y_{i}\right|^{p}\right) \geq x\right]=\prod_{i=1}^{n} e^{-x \cdot\left|y_{i}\right|^{p}} \\
& =1-e^{-x\|y\|_{p}^{p}}
\end{aligned}
$$

Hence q is distributed $E \cdot \frac{1}{\|y\|_{p}^{p}}$ where E is a standard exponential. We shall refer to the above property of the exponential as the stability property.

Let us now get back to estimating the p-Norm.

3 Sketch and Estimate

3.1 What sketch do we use and why?

Our sketch is of the form $P \cdot D$ where P is a $s \times n$ CountSketch matrix and D is a $n \times n$ diagonal matrix given by $\operatorname{diag}\left(\frac{1}{E_{1}^{1 / p}}, \ldots, \frac{1}{E_{n}^{1 / p}}\right)$

What does $\|D y\|_{\infty}^{p}$ look like for any vector y ?

$$
\|D y\|_{\infty}^{p}=\max _{i} \frac{\left|y_{i}\right|^{p}}{E_{i}}=\frac{1}{\min _{i} \frac{E_{i}}{\left|y_{i}\right|^{p}}}
$$

By the stability property of the exponential

$$
=\frac{1}{\frac{E}{\|y\|_{p}^{p}}}=\frac{\|y\|_{p}^{p}}{E}
$$

What is the probability that $E \sim \operatorname{Exp}(1)$ lies within some fixed range $[0.1,10]$?

$$
\operatorname{Pr}[E \in[0.1,10]]=1-e^{-10}-\left(1-e^{-0.1}\right)=e^{-0.1}-e^{-10}>\frac{4}{5}
$$

Now we know that with probability at least $\frac{4}{5}$, we have that $\frac{\|y\|_{p}^{p}}{10} \leq\|D y\|_{\infty}^{p} \leq 10\|y\|_{p}^{p}$. Hence we know that $\|D y\|_{\infty}^{p}$ is a good estimator for the p-Norm. But $D y$ is an n-dimensional vector! Which is why we sketch.

3.2 What is sketching doing?

Recall that the CountSketch matrix P is a $s \times n$ matrix where each column has a ± 1 (each with equal probability) in exactly one coordinate chosen uniformly at random amongst the s coordinates and all other entries are 0 . The rows of P can interpreted as hash buckets where each row takes a signed sum of the entries corresponding to the non-zero values in the row. ${ }^{2}$
P can thus be described as a pair of functions $h:[n] \rightarrow[s]$ and $\sigma:[n] \rightarrow\{+1,-1\}$. Here $h(i)$ describes the coordinate of the non-zero value in the $i^{\text {th }}$ column and $\sigma(i)$ describes the sign of the non-zero value in the $i^{\text {th }}$ column. For the sake of convenience we will assume that h, σ are truly random.

3.3 Achieving $\|P D y\|_{\infty} \approx\|D y\|_{\infty}$

To achieve this with good probability we want two things:

1. In each bucket i not containing the coordinate j for which $\left|(D y)_{j}\right|=\|D y\|_{\infty}$, we want the signed sum to be small. I.e we want $\left|(P D y)_{i}\right| \leq \frac{\|y\|_{p}}{100}$
2. In the buckets that do contain the coordinate j for which $\left|(D y)_{j}\right|=\|D y\|_{\infty}$, we want the noise to be small. I.e we want $\left|(P D y)_{i}-\|D y\|_{\infty}\right| \leq \frac{\|y\|_{p}}{100}$
[^1]Let us set up some notation before we start analyzing $\|P D y\|_{\infty}$. Let $\delta(X)=1$ if some event X occurs and 0 otherwise. What does the value in the $i^{\text {th }}$ hash bucket, i.e $\left|(P D y)_{i}\right|$, look like?

$$
(P D y)_{i}=\sum_{j=1}^{n} \delta(h(j)=i) \cdot \sigma(j) \cdot\left|(D y)_{j}\right|
$$

Notice that $\underset{P}{\mathbb{E}}\left[(P D y)_{i}\right]=0$ since for every $j \in[n]$ for which $h(j)=i$, we will have that with equal probability the value is +1 or -1 and hence in expectation the value is 0 . Notice that this expectation is taken over the randomness of P. Ok, now we know that $(P D y)_{i}$ is mean 0 but how concentrated is it? I.e what is its variance?

$$
\begin{aligned}
\underset{P}{\mathbb{E}}\left[(P D y)_{i}^{2}\right] & =\sum_{j, k} \underset{P}{\mathbb{E}}[\delta(h(j)=i) \cdot \delta(h(k)=i) \cdot \sigma(j) \sigma(k)] \cdot\left|(D y)_{j}\right| \cdot\left|(D y)_{k}\right| \\
& =\sum_{j \neq k}^{\mathbb{E}}[\delta(h(j)=i) \cdot \sigma(j)] \cdot \mathbb{E}[\delta(h(k)=i) \cdot \sigma(k)] \cdot\left|(D y)_{j}\right| \cdot\left|(D y)_{k}\right| \\
& +\sum_{j=1}^{s} \mathbb{E}\left[\delta(h(j)=i)^{2} \cdot \sigma(j)^{2}\right](D y)_{j}^{2} \\
& =\sum_{j=1}^{s} \mathbb{E}\left[\delta(h(j)=i)^{2} \cdot \sigma(j)^{2}\right](D y)_{j}^{2}=\frac{1}{s}\|D y\|_{2}^{2} \\
\underset{D}{\mathbb{E}}\left[\|D y\|_{2}^{2}\right] & =\sum_{i=1}^{n} y_{i}^{2} \cdot \underset{D}{\mathbb{E}}\left[D_{i, i}^{2}\right] \\
\underset{D}{\mathbb{E}}\left[D_{i, i}^{2}\right] & =\int_{t \geq 0} t^{\frac{-2}{p}} e^{-t} d t=\int_{0}^{1} t^{\frac{-2}{p}} e^{-t} d t+\int_{t \geq 1} t^{\frac{-2}{p}} e^{-t} d t
\end{aligned}
$$

For $t \in[0,1], e^{-t} \leq 1$ and since $p>2$, for $t \geq 1, t^{-2 / p} \leq 1$. Hence we have

$$
\begin{aligned}
& \leq \int_{0}^{1} t^{\frac{-2}{p}} d t+\int_{t \geq 1} e^{-t} d t \\
& =\left.\frac{1}{1-\frac{2}{p}} \cdot t^{1-\frac{2}{p}}\right|_{0} ^{1}-\left.e^{-t}\right|_{1} ^{\infty}=O(1)
\end{aligned}
$$

Hence we have that $\underset{P, D}{\mathbb{E}}\left[(P D y)_{i}^{2}\right]=\frac{1}{s}\|y\|_{2}^{2}$. But, we want to relate the variance of $(P D y)_{i}$ to the p-Norm of y not the 2-Norm. To do this, we can use the generalized version of the Cauchy-Schwarz inequality, known as Hölder's inequality.

Fact 2. A corollary of Hölder's inequality is that if x, y are vectors and $p, q \in[1, \infty]$ such that $\frac{1}{p}+\frac{1}{q}=1$ we have that

$$
\langle x, y\rangle \leq\|x\|_{p} \cdot\|y\|_{p}
$$

We then write $\|y\|_{2}^{2}$ in terms of the p-Norm using Hölder's inequality.

$$
\|y\|_{2}^{2}=\sum_{j=1}^{n} y_{j}^{2} \cdot 1 \leq\left(\sum_{j=1}^{n}\left(y_{j}^{2}\right)^{p / 2}\right)^{2 / p} \cdot\left(\sum_{j=1}^{n} 1^{q}\right)^{1 / q}
$$

The last inequality is applied using Fact $\sqrt[2]{ }$. For the inequality to hold, it must be that $q=\frac{1}{1-\frac{2}{p}}$. Substituting the value of q into the above expression gives us that $\|y\|_{2}^{2} \leq n^{1-2 / p}\|y\|_{p}^{2}$. Putting all this together, we have finally found the variance of $(P D y)_{i}$ in terms of the p-Norm of y. We finally have that

$$
\underset{P, D}{\mathbb{E}}\left[(P D y)_{i}^{2}\right] \leq \frac{1}{s} \cdot n^{1-2 / p}\|y\|_{p}^{2}
$$

Recall we wanted to show two properties of $\|P D y\|_{\infty}$. To show these, we will need to show concentration of $\|P D y\|_{\infty}$ for which we have mean and variance. To show this we look at Bernstein's bound.

Bernstein's Bound: Suppose R_{1}, \ldots, R_{n} are independent random variables and for all $j,\left|R_{j}\right| \leq K$ and $\operatorname{Var}\left[\sum_{j} R_{j}\right]=\sigma^{2}$ then there are constants c, C so that for all $t>0$

$$
\operatorname{Pr}\left[\left|\sum_{j=1}^{n} R_{j}-\mathbb{E}\left[\sum_{j=1}^{n} R_{j}\right]\right|\right] \leq C\left(e^{\frac{-c t^{2}}{\sigma^{2}}}+e^{\frac{-c t}{K}}\right)
$$

We will apply Bernstein's bound to $(P D y)_{i}$ by setting each $R_{j}:=\delta(h(i)=j) \cdot \sigma(j) \cdot\left|(D y)_{j}\right|$. Setting $t=\frac{\|y\|_{p}}{100}$ and $s=\theta\left(n^{1-2 / p} \log (n)\right)$ gives us that

$$
e^{\frac{-c t^{2}}{\sigma^{2}}}=\theta\left(\frac{1}{n^{2}}\right)
$$

But what about the term $K=\max _{j}\left|R_{j}\right|$, notice that can be as high as $\|D y\|_{\infty}$. In fact, the bucket i which contains the $\|D y\|_{\infty}$ will have such a large K. Hence applying Bernstein's bound naively will give us a poor bound. We must condition on which bucket the large value $\left(\|D y\|_{\infty}\right)$ sits in and then apply Bernstein's bound to show that these entries are small. Additionally we need to argue that for the buckets in which the large entry $\left(\|D y\|_{\infty}\right)$ sits, the rest of the noise is small. These arguments will be made in the upcoming lecture.

[^0]: ${ }^{1}$ Notice that for $p=\infty$ this automatically implies a linear lower bound on the space. We can't do anything smarter than store the entire n-dimensional vector \vec{x}

[^1]: ${ }^{2}$ Alternatively one can view it as $D y$ taking a linear combination of the columns and each entry in y getting mapped uniformly at random to one of the s coordinates. We take a signed sum of the entries that get mapped to the same coordinate.

