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Prof. David Woodruff Scribe: Aditya Krishnan

For context, these notes continue after the discussion on 1-Norm estimators, 2-Norm estimators and
other canonical problems in the Turnstile streaming model.

1 p-Norm Estimators

The setting under consideration is the Turnstile streaming model where we have some vector
~x to which updates arrive as a stream. Our goal is to estimate ‖~x‖p where the vector ~x ∈
{−M, . . . 0, . . . ,M}n for some M ∈ N.

1.1 Estimating for small p where 0 < p < 2

Using the techniques seen to estimate the 1-Norm in the Turnstile model, we can use similar
techniques to estimate the p-Norm for 0 < p < 2. Recall that 1-Norm estimation and 2-Norm
estimation crucially used distributions (Cauchy and Gaussian respectively) in their sketches that were
norm preserving. p-Norm preserving distributions are known as p-stable distributions. Specifically,

Definition. A real valued distribution D is called p-stable if for random variables x, x1, . . . , xn
that are i.i.d from D and real values a1, . . . , an ∈ R we have the following property:

a1x1 + · · ·+ anxn ∼ ‖a‖p x

p-stable distributions exists for all p ∈ (0, 2] but not for p > 2. Using p-stable distributions, one
can perform p-Norm estimation in a similar fashion to 1-Norm estimation for p ∈ (0, 2]. It is also
known that one can sample from p-stable distributions efficiently and that one can discretize them
and construct sketching matrices consisting of p-stably distributed random variables with limited
independence.

1.2 Estimating for p > 2

We will use a sketch and sample technique to estimate larger norms but since we don’t have p-stable
distributions, our sketch matrices need to rely on different distributions that capture the norm.
Additionally, for p > 2, there is a Ω(n1− 2

p ) space complexity lower bound in the Turnstile streaming
model 1. We will now discuss a Õ(n1− 2

p ) space algorithm for p-Norm estimation when p > 2.

First, we must perform a seemingly unmotivated digression into exponential random variables.
1Notice that for p = ∞ this automatically implies a linear lower bound on the space. We can’t do anything smarter

than store the entire n-dimensional vector ~x
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2 Exponential random variables and their stability

Definition. An exponential random variable X(λ) with λ ∈ R+ has the following PDF given by
fX and CDF given by FX

fX(λ)(x) = λe−λx FX(λ)(x) = 1− e−λx

Let us refer to X(1) as a standard exponential distribution, and from now on when we refer to an
exponential without its parametrization (such as X) we shall assume this is referring to a standard
exponential.

Fact 1. For a scalar t ≥ 0, the distribution corresponding to tX(λ) is the same as X(λt )

2.1 How stable are they?

Let E1, . . . , En be independent exponential random variables, let y ∈ Rn be a vector and let p ∈ R.
We then investigate the distribution q = min

(
E1
|y1|p , . . . ,

En
|yn|p

)
. To do so, let us calculate the CDF

Fq(x) of q.

Fq(x) = 1−Pr [q > x] = 1−Pr
[
∀i, Ei
|yi|p

≥ x
]

By independence of E1, . . . , En

= 1−
n∏
i=1

Pr
[
Ei
|yi|p

≥ x
]

By Fact 1 we have

= 1−
n∏
i=1

Pr
[
Ei
(
|yi|p

)
≥ x

]
=

n∏
i=1

e−x·|yi|
p

= 1− e−x‖y‖
p
p

Hence q is distributed E · 1
‖y‖pp

where E is a standard exponential. We shall refer to the above
property of the exponential as the stability property.

Let us now get back to estimating the p-Norm.

3 Sketch and Estimate

3.1 What sketch do we use and why?

Our sketch is of the form P ·D where P is a s× n CountSketch matrix and D is a n× n diagonal

matrix given by diag
(

1
E

1/p
1
, . . . , 1

E
1/p
n

)
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What does ‖Dy‖p∞ look like for any vector y?

‖Dy‖p∞ = max
i

|yi|p

Ei
= 1

mini Ei
|yi|p

By the stability property of the exponential

= 1
E
‖y‖pp

=
‖y‖pp
E

What is the probability that E ∼ Exp(1) lies within some fixed range [0.1, 10]?

Pr
[
E ∈ [0.1, 10]

]
= 1− e−10 − (1− e−0.1) = e−0.1 − e−10 >

4
5

Now we know that with probability at least 4
5 , we have that ‖y‖

p
p

10 ≤ ‖Dy‖
p
∞ ≤ 10 ‖y‖pp. Hence we

know that ‖Dy‖p∞ is a good estimator for the p-Norm. But Dy is an n-dimensional vector! Which
is why we sketch.

3.2 What is sketching doing?

Recall that the CountSketch matrix P is a s× n matrix where each column has a ±1 (each with
equal probability) in exactly one coordinate chosen uniformly at random amongst the s coordinates
and all other entries are 0. The rows of P can interpreted as hash buckets where each row takes a
signed sum of the entries corresponding to the non-zero values in the row. 2

P can thus be described as a pair of functions h : [n] → [s] and σ : [n] → {+1,−1}. Here h(i)
describes the coordinate of the non-zero value in the ith column and σ(i) describes the sign of the
non-zero value in the ith column. For the sake of convenience we will assume that h, σ are truly
random.

3.3 Achieving ‖PDy‖∞ ≈ ‖Dy‖∞

To achieve this with good probability we want two things:

1. In each bucket i not containing the coordinate j for which
∣∣(Dy)j

∣∣ = ‖Dy‖∞, we want the
signed sum to be small. I.e we want

∣∣(PDy)i
∣∣ ≤ ‖y‖p100

2. In the buckets that do contain the coordinate j for which
∣∣(Dy)j

∣∣ = ‖Dy‖∞, we want the noise
to be small. I.e we want

∣∣(PDy)i − ‖Dy‖∞
∣∣ ≤ ‖y‖p100

2Alternatively one can view it as Dy taking a linear combination of the columns and each entry in y getting
mapped uniformly at random to one of the s coordinates. We take a signed sum of the entries that get mapped to the
same coordinate.
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Let us set up some notation before we start analyzing ‖PDy‖∞. Let δ(X) = 1 if some event X
occurs and 0 otherwise. What does the value in the ith hash bucket, i.e

∣∣(PDy)i
∣∣, look like?

(PDy)i =
n∑
j=1

δ(h(j) = i) · σ(j) ·
∣∣(Dy)j

∣∣
Notice that E

P

[
(PDy)i

]
= 0 since for every j ∈ [n] for which h(j) = i, we will have that with

equal probability the value is +1 or −1 and hence in expectation the value is 0. Notice that this
expectation is taken over the randomness of P . Ok, now we know that (PDy)i is mean 0 but how
concentrated is it? I.e what is its variance?

E
P

[
(PDy)2

i

]
=
∑
j,k

E
P

[
δ(h(j) = i) · δ(h(k) = i) · σ(j)σ(k)

]
·
∣∣(Dy)j

∣∣ ·∣∣(Dy)k
∣∣

=
∑
j 6=k

E[δ(h(j) = i) · σ(j)] · E[δ(h(k) = i) · σ(k)] ·
∣∣(Dy)j

∣∣ ·∣∣(Dy)k
∣∣

+
s∑
j=1

E[δ(h(j) = i)2 · σ(j)2](Dy)2
j

=
s∑
j=1

E[δ(h(j) = i)2 · σ(j)2](Dy)2
j = 1

s
‖Dy‖22

E
D

[
‖Dy‖22

]
=

n∑
i=1

y2
i · E

D

[
D2
i,i

]

E
D

[
D2
i,i

]
=
∫
t≥0

t
−2
p e−tdt =

∫ 1

0
t

−2
p e−tdt+

∫
t≥1

t
−2
p e−tdt

For t ∈ [0, 1], e−t ≤ 1 and since p > 2, for t ≥ 1, t−2/p ≤ 1. Hence we have

≤
∫ 1

0
t

−2
p dt+

∫
t≥1

e−tdt

= 1
1− 2

p

· t1−
2
p

∣∣∣∣1
0
− e−t

∣∣∣∣∞
1

= O(1)

Hence we have that E
P,D

[
(PDy)2

i

]
= 1

s‖y‖
2
2. But, we want to relate the variance of (PDy)i to the

p-Norm of y not the 2-Norm. To do this, we can use the generalized version of the Cauchy-Schwarz
inequality, known as Hölder’s inequality.

Fact 2. A corollary of Hölder’s inequality is that if x, y are vectors and p, q ∈ [1,∞] such that
1
p + 1

q = 1 we have that
〈x, y〉 ≤ ‖x‖p · ‖y‖p

We then write ‖y‖22 in terms of the p-Norm using Hölder’s inequality.
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‖y‖22 =
n∑
j=1

y2
j · 1 ≤

 n∑
j=1

(y2
j )p/2

2/p

·

 n∑
j=1

1q
1/q

The last inequality is applied using Fact 2. For the inequality to hold, it must be that q = 1
1− 2

p

.

Substituting the value of q into the above expression gives us that ‖y‖22 ≤ n1−2/p ‖y‖2p. Putting all
this together, we have finally found the variance of (PDy)i in terms of the p-Norm of y. We finally
have that

E
P,D

[
(PDy)2

i

]
≤ 1
s
· n1−2/p ‖y‖2p

Recall we wanted to show two properties of ‖PDy‖∞. To show these, we will need to show
concentration of ‖PDy‖∞ for which we have mean and variance. To show this we look at Bernstein’s
bound.

Bernstein’s Bound: Suppose R1, . . . , Rn are independent random variables and for all j,
∣∣Rj∣∣ ≤ K

and Var
[∑

j Rj
]

= σ2 then there are constants c, C so that for all t > 0

Pr


∣∣∣∣∣∣
n∑
j=1

Rj − E[
n∑
j=1

Rj ]

∣∣∣∣∣∣
 ≤ C (e−ct2

σ2 + e
−ct
K

)

We will apply Bernstein’s bound to (PDy)i by setting each Rj := δ(h(i) = j) ·σ(j) ·
∣∣(Dy)j

∣∣. Setting
t = ‖y‖p

100 and s = θ(n1−2/p log(n)) gives us that

e
−ct2
σ2 = θ

( 1
n2

)
But what about the term K = maxj

∣∣Rj∣∣, notice that can be as high as ‖Dy‖∞. In fact, the bucket
i which contains the ‖Dy‖∞ will have such a large K. Hence applying Bernstein’s bound naively
will give us a poor bound. We must condition on which bucket the large value (‖Dy‖∞) sits in and
then apply Bernstein’s bound to show that these entries are small. Additionally we need to argue
that for the buckets in which the large entry (‖Dy‖∞) sits, the rest of the noise is small. These
arguments will be made in the upcoming lecture.
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