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1 Recap of l1-regression, and how to speed it up

Recall that the goal for l1 regression is to find x minimizing

‖Ax− b‖1

for a given A and b. Before, we took a d log d× n sketch matrix R and tried to solve

min
x
‖RAx−Rb‖1

Then we found a special basis U with the property that

‖x‖1
poly(d) ≤ ‖Ux‖1 ≤ poly(d) ‖x‖1

and subsequently sampled rows from the special basis dependent on it’ l1 norm, and then solved
exactly the resulting linear regression problem on the sample matrix.

The problem with this approach is that we have to compute R ·A, which is expensive. Instead we
claim we can solve this problem by choosing R = S ·C, where S is a CountSketch matrix and C is a
diagonal matrix of i.i.d. Cauchy random variables. In particular we have that

‖Ax‖1
d2 log2(d)

≤ ‖RAx‖1 ≤ O(d log d) ‖Ax‖1 ,

which speeds up the problem from nnz(A) · d log d+ poly(d/ε) to nnz(A) + poly(d/ε).

1.1 Interesting Cauchy facts

We note that for n i.i.d. copies R1, . . . , Rn of a standard Cauchy random variable, the distribution of∑n
i=1Ri
n

is still a Cauchy random variable.

2 Introduction to the Streaming Model

2.1 Turnstile Streaming Model

In the Turnstile Streaming Model, we start with a vector x0 = 0 ∈ Rn. Then we are give a long
stream of updates (i.e. xi+1 := xi+∆i) where ∆i ∈ {−M,−M +1, . . . ,M −1,M}, where we assume
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that M ≤ poly(n). Furthermore, we may assume that xi ∈ {−M, · · · ,M}. We then wish to to
output a good approximation of f(x) with high probability at the end for some function f . Note
that in this model, out x is massive and the amount of space we wish to use to compute f(x) is
far smaller than x itself. We study this model with the intent to study problems such as stock
transactions, weather data, and genomes.

2.2 Testing if x = 0n

One question we could ask is if we can determine if x = 0n after the stream runs. More specifically,
we wish to investigate whether we can do so efficiently (with only O(logn) bits of space). One way to
see how to do this is to note that a CountSketch matrix S with O( 1

ε2 ) is a (1±ε)subspace embedding
and so we may pick ε = O(1) so that Sx has only O(1) entries and we can store each entry with
O(log(n)) bits and therefore the entire vector with O(log(n)) bits. Using hash functions, we can
store a representation of S with 6 log(n) bits so the total amount of storage needed is O(log(n)).

Interestingly, the problem cannot be solved deterministically, as there is in fact an Ω(n log(n)) lower
bound on the problem. To see this consider the case where on the first 1/2 of a stream the vector a
is in {0, 1,poly(n)}n and in the second 1/2 is in {−poly(n), · · · ,−1, 0} using o(n logn) bits. Then,
this means that there are vectors a, a′ which collide. We may then apply a standard pigeonhole
principle argument on the state of the algorithm to conclude that the algorithm must output the
same result for the two different inputs.

2.3 Recovery of k-sparse vectors

What if we are asked to recover x given that only k entries are non-zero? It turns out you can do
this with k poly(logn) bits of space, and in fact we can do so deterministically.

To begin our investigation of this problem, first consider the case where x only has 1 non-zero entry.
Then if we maintain (1, · · · , 1)x = xi and (1, 2, · · · , n)x = ixi, we can recover the value of xi and its
index i. Now we attempt to generalize this idea. Consider the following algorithm:

1. Let A be an s× n matrix s.t. that any 2k columns are linearly independent

2. Maintain A · x

Claim 1. One can recover the subset S of k non-zero entries and their values from A · x.

Proof. This is a simple argument based on linear independence of columns. �

An example of a matrix A that works is the Vandermonde matrix with s = 2k rows and n columns
and Ai,j = jj−1. One can show that any 2k columns of A are linearly independent. Unfortunately,
the entries of A are increase exponentially in n. To work around this, we store A · x mod p for
prime p of size poly(n). Note that this works since taking the entries modulo a prime p maintains
the independence of the columns (consider the determinant for example) and x mod p = x since
have chosen x ≤ poly(n) < p.
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Remark 1. We claimed that we could make this algorithm deterministic, but the standard approach
for finding primes is randomized. If you really want to make this truly deterministic, you can use
the fact that there is always a prime in [n, 2n] and check all values in this finite range.

2.4 Estimation of norms

Another streaming problem is the approximation of norms, i.e. f = ‖·‖. For instance, we’d like to
approximate the 2-norm, i.e. compute Z for which

(1− ε) ‖x‖22 ≤ Z ≤ (1 + ε) ‖x‖22

We can do this by taking a CountSketch matrix S with (1/ε2) rows and making incremental updates
of the product Sx. Note that we have met our space requirements since S can be stored efficiently
using limited independence. In addition, our theory of subspace embeddings shows that outputting
‖Sx‖2 at the end of the stream yields a good approximation with high probability. Note that our
space complexity is 1/ε2 words, each with logn bits.

Now consider the corresponding problem for the 1-norm. For the problem of finding Z that satisfies

(1− ε) ‖x‖1 ≤ Z ≤ (1 + ε) ‖x‖1 ,

we might consider sampling a random Cauchy matrix which we can store with (1/ε) words, update
Sx := Sx+ siS∗,i and at the end output ‖Sx‖1. Unfortunately, this doesn’t work because Cauchy
random variables are not well-concentrated. However, we can notice that

Sx = ‖x‖1
(1/ε2)∑
i=1
|Ci|1

1
n

Consider taking the median value of the entries. Now note that the cdf of a Cauchy random variable
evaluated at z is

F (z) =
∫ z

0
f(x) dx = 2

π
arctan(z)

and F (1) = 1/2 exactly when z = tan(π/4), so median(|C|) = 1. Note that if we take r =
log(1/δ)
ε2 independent samples X1, · · · , Xr from F and set X = medianiXi, then F (X) lies in

[1/2− ε, 1/2 + ε] w.p. (1− δ). To see this, for each sample Xi we define Ai, Bi where Ai corresponds
to Ai ≥ 1/2− ε fraction of distribution and Bi ≤ 1/2 + ε and use Chernoff to show concentration
around [1/2− ε, 1/2 + ε]. From this we get that F−1(X) = tan(xπ2 ) ∈ [1− 4ε, 1 + 4ε] and thus we
have shown that using the median as our estimator works.
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