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For context, this continues the quest that the previous scribe notes started, of performing `1
regression fast, that is, performing the task of minimizing ‖Ax− b‖1 by suitable choice of x.

1 The Cauchy Distribution

We survey a bunch of the properties of the Cauchy distribution in this section.

The Cauchy distribution, denoted ψ, has probability density function

fψ(z) = 1
π(1 + z2)

for z ∈ R. Note that this distribution has undefined expectation and infinite variance.

A notable property of the Cauchy distribution is that it is 1-stable: if z1, z2, . . . , zn are i.i.d. Cauchy,
then for all a ∈ Rn, we have a1z1 + . . .+ anzn ∼ ‖a‖1z where z is Cauchy. We don’t prove this here
but drop the words ‘Fourier transform’ and ‘convolution’ as hints.

A natural question to ask is how one can generate a Cauchy random variables and it turns out this
can be done by taking the ratio of two standard normal random variables.

Recall that R was the dense sketching matrix made of i.i.d. Cauchy random variables from the
previous scribe notes. By 1-stability for all rows r of R, we have

〈r,Ax〉 = ‖Ax‖1Z
d log d

where Z is Cauchy. In particular, we have

1
d log d

[
‖Ax‖1Z1 · · · ‖Ax‖1Zd log d

]
where Z1, Z2, . . . , Zd log d are i.i.d. Cauchy.

Now that we have established some basic properties of the Cauchy distribution, for the purposes of
regression, we study the term ‖RAx‖1 and prove the sketching theorem.

Proof of Sketching Theorem. We point out that ‖RAx‖1 = ‖Ax‖1
∑

j
|Zj |

d log d where |Zj | are half-Cauchy.
The value of

∑
j |Zj | is Ω(d log d) with probability 1− e−cd log d). Indeed, the value of |Zj | is at least

1 with some constant probability p, and by Chernoff bounds, the the fraction of |Zj | with value
less than 1 is at least p

2 with probability at least 1− e−cd log d by Chernoff bounds. Note that this
establishes that for a fixed x, we have ‖RAx‖1 ≥ ‖Ax‖1 with probability 1− e−cd log d. We shall use
a γ-net argument to generalize this to all x.
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We would be very happy if we could say a statement like “
∑
j |Zj | is O(d log d) with high probability”,

but such a thing isn’t true since the Cauchy distribution is heavy tailed, so an alternate approach of
proof is called for.

Note that there exists a well conditioned basis of A and without loss of generality say the basis
vectors are A∗,1, A∗,2, . . . , A∗,d, then we have

‖RA∗i‖1 =
∑
j

|rj ·A∗i| = ‖A∗i‖2
∑
j |Zi,j |
d log d

where Zi,j is entry (j, i) of the matrix RA.

Let Ei,j be the event that |Zi,j | ≤ d3. Define Z ′i,j = |Zi,j | if |Zi,j | ≤ d3 and Z ′i,j = d3 otherwise.

We now analyze E[Zi,j |Ei,j ] = E[Z ′i,j |Ei,j ], which is given by

E[Z ′i,j |Ei,j ] =
∫ d3

0

2z
π(1 + z2)P[Ei,j ]

dz

= 2
π P[Ei,j ]

∫ d3

0

z

1 + z2dz

= 2
π P[Ei,j ]

log z
∣∣∣d3

1
+ Θ(1)

= Θ(log d)

Let E be the event that for all i, j the event Ei,j occurs. We know that

P[E] ≤ d2 log d
d3 = log d

d

And this means that
P[E] ≥ 1− log d

d

The goal is to show the sketching theorem by assuming E occurs: then the chance of E not occuring
would get absorbed in the 1

100 failure probability that the sketching theorem permits.

Thus, towards this goal, we analyze E[Z ′i,j |Ei,j ].

E[Z ′i,j |Ei,j ] = E[Z ′i,j |Ei,j , E]P[E|Ei,j ] + E[Z ′i,j |Ei,j , E]P[E|Ei,j ]
≥ E[Z ′i,j |Ei,j , E]P[E|Ei,j ]

= E[Z ′i,j |E]
(
P[Ei,j |E]P[E]

P[Ei,j ]

)

≥ E[Z ′i,j |E]
(

1− log d
d

)
So, after all the dust settles, we get E[Z ′i,j |E] = O(log d).

Note that we have
‖RA∗i‖1 = ‖A∗i‖1

∑
j |Zi,j |
d log d
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and since the expected value of the above expression is ‖A∗i‖1 log d, we know that the expected
value of

∑
i ‖RA∗i‖1 is log d

∑
i ‖A∗i‖1, which means with constant probability

∑
i ‖RA∗i‖1 is at

most O(log d)
∑
i ‖A∗i‖1 via Markov’s inequality.

We reiterate that A∗1, . . . , A∗d is a well-conditioned basis, and in the earlier scribe notes, we showed
the existence of such a basis. We will use the Auerbach basis, which always exists and satisfies two
properties: for all x, ‖x‖∞ ≤ ‖Ax‖1 and

∑
i ‖A∗i‖1 = d.

To see why this basis is well-conditioned, consider the following.

‖x‖1
d
≤ ‖x‖∞

≤ ‖Ax‖1

≤
∥∥∥∥∥
d∑
i=1

A∗ixi

∥∥∥∥∥
1

≤
d∑
i=1
‖A∗i‖1|xi|

≤ ‖x‖∞ ·
d∑
i=1
‖A∗i‖1

= d‖x‖∞ ≤ d‖x‖1

We know that
∑
i ‖RA∗i‖1 is, with constant probability, at most O(log d)

∑
i ‖A∗i‖1, which by the

Auerbach basis is O(d log d). Thus, for all x, we have

‖RAx‖1 ≤
∑
i

‖RA∗ixi‖1 ≤ ‖x‖∞
∑
i

‖RA∗i‖1 = ‖x‖∞O(d log d) ≤ O(d log d)‖Ax‖1

Now, we look back at what we have done so that we don’t lose sight of the high level picture. First
of all, we showed a constant probability upper bound of O(d log d)‖Ax‖1 on ‖RAx‖1 for all x. And
we showed that for any fixed x, ‖RAx‖1 ≥ ‖Ax‖1 with probability at least 1− e−cd log d, claiming
we would generalize this to all x with a γ-net argument.

Set γ = 1
d log3 d

, so we get a γ-net with |M | ≤ dO(d). By union bound on all y ∈M , we have ‖Ry‖1 ≥
‖y‖1. Suppose we take x with unit `1 norm. There is y ∈M satisfying ‖Ax− y‖1 ≤ γ = 1

d3 log d .

Now, from a chain of inequalities we get

‖RAx‖1 ≥ ‖Ry‖1 − ‖R(Ax− y)‖1
≥ ‖y‖1 −O(d log d)‖Ax− y‖1
≥ ‖y‖1 −O(d log d)γ

≥ ‖y‖1 −O
( 1
d2

)
≥ ‖y‖12

The last inequality is justified by ‖Ax′‖1 ≥ ‖x′‖∞ ≥ ‖x
′‖
d = 1

d .
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Note that since ‖Ax − y‖1 ≤ γ, which means ‖Ax − y‖1 + ‖y‖1 − γ ≤ 2‖RAx‖1. It follows that
1
2‖Ax− y‖1 + 1

2‖y‖1 ≤ 2‖RAx‖1. By triangle inequality, we get that

1
2‖Ax‖1 ≤ 2‖RAx‖1

which means ‖RAx‖1 ≥ 1
2‖Ax‖1.
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