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Lecture 6-2 — 10/12/2017
Prof. David Woodruff Scribe: Sidhanth Mohanty

For context, this continues the quest that the previous scribe notes started, of performing ¢
regression fast, that is, performing the task of minimizing ||Az — b||; by suitable choice of z.

1 The Cauchy Distribution

We survey a bunch of the properties of the Cauchy distribution in this section.
The Cauchy distribution, denoted 1, has probability density function
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for z € R. Note that this distribution has undefined expectation and infinite variance.

A notable property of the Cauchy distribution is that it is 1-stable: if z1, 25, ..., z,, are i.i.d. Cauchy,
then for all a € R™, we have ajz1 + ...+ anz, ~ |lal]|1z where z is Cauchy. We don’t prove this here
but drop the words ‘Fourier transform’ and ‘convolution’ as hints.

A natural question to ask is how one can generate a Cauchy random variables and it turns out this
can be done by taking the ratio of two standard normal random variables.

Recall that R was the dense sketching matrix made of i.i.d. Cauchy random variables from the
previous scribe notes. By 1-stability for all rows r of R, we have
[Az|Z
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where Z is Cauchy. In particular, we have
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where Z1,Z3, ..., Zjloga are i.i.d. Cauchy.

Now that we have established some basic properties of the Cauchy distribution, for the purposes of
regression, we study the term ||RAz||; and prove the sketching theorem.

Proof of Sketching Theorem. We point out that | RAz||1 = ||Az|1 Xd:ljofél where | Zj| are half-Cauchy.
The value of >, |Z;| is (dlog d) with probability 1 — e~cdlogd) Tndeed, the value of | Z;] is at least
1 with some constant probability p, and by Chernoff bounds, the the fraction of |Z;| with value
less than 1 is at least £ with probability at least 1 — e~¢dlogd iy Chernoff bounds. Note that this
establishes that for a fixed z, we have | RAx||; > ||Az||; with probability 1 — e~°?1°84 We shall use
a y-net argument to generalize this to all x.




We would be very happy if we could say a statement like “}° |Z;| is O(dlog d) with high probability”,
but such a thing isn’t true since the Cauchy distribution is heavy tailed, so an alternate approach of
proof is called for.

Note that there exists a well conditioned basis of A and without loss of generality say the basis
vectors are Ay 1, As2,..., Ay 4, then we have
Zj |Zi,j

where Z; ; is entry (j,4) of the matrix RA.
Let E; ; be the event that |Z; ;| < d3. Define Zi i =12Zijlif |Zij] < d® and Zi;= d® otherwise.
We now analyze E[Z; ;| E; ;] = E[Z] ;| E; ;], which is given by
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Let E be the event that for all 4, j the event E; ; occurs. We know that
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And this means that
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The goal is to show the sketching theorem by assuming E occurs: then the chance of E not occuring
would get absorbed in the ﬁ failure probability that the sketching theorem permits.

Thus, towards this goal, we analyze IE[ZZ’j|E”]

E[Z] ;|Ei ;] = E[Z; ;|E; j, E]P[E|E; j] + E[Z; ;| E; j, E) P[E| E; 5]
> E[Z; ;|Ei ;, E)PIE|E; j]
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So, after all the dust settles, we get E[Z] ;|E] = O(logd).

Note that we have
Zj |Zi7j‘
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and since the expected value of the above expression is || A;||1logd, we know that the expected
value of >, ||RA4||1 is logd>",; || Axill1, which means with constant probability Y, || RA4i||1 is at
most O(logd) >, [|A«ill1 via Markov’s inequality.

We reiterate that A,q,..., A.q is a well-conditioned basis, and in the earlier scribe notes, we showed
the existence of such a basis. We will use the Auerbach basis, which always exists and satisfies two
properties: for all z, ||z]|e < ||Az|l1 and >, ||Asill1 = d.

To see why this basis is well-conditioned, consider the following.
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We know that >, ||RA|1 is, with constant probability, at most O(logd) Y, || A«i|[1, which by the
Auerbach basis is O(dlogd). Thus, for all x, we have

IRAz|l1 < ) IIRAwwilly < ||2llee D 1RAsill = [[2]lcO(dlog d) < O(dlog d)|| Az

Now, we look back at what we have done so that we don’t lose sight of the high level picture. First
of all, we showed a constant probability upper bound of O(dlogd)||Ax||; on ||[RAz|; for all z. And
we showed that for any fixed z, |RAz|; > ||Az||; with probability at least 1 — e~¢¢1°84 claiming
we would generalize this to all  with a «-net argument.

Set v = so we get a y-net with [M| < d°(9). By union bound on all y € M, we have ||Ry|; >
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lly||1. Suppose we take z with unit ¢; norm. There is y € M satisfying ||[Az —y|; <y = ﬁogd.

Now, from a chain of inequalities we get
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The last inequality is justified by [|Ax'||1 > ||2']|c0 > HZH = é.




Note that since ||Az — y||1 < 7, which means [[Az — y|[1 + ||y||1 — v < 2||RAz|[;. It follows that
1Az — yll1 + 3yl < 2||[RAz[;;. By triangle inequality, we get that

1
SllAz] < 2| RA],

which means |RAz||; > || Az||:.
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