\mathbf{CS} :	15-859:	Algorithms	for	Big	Data
-----------------	---------	------------	-----	-----	------

Lecture $6-2 - \frac{10}{12}/2017$

Fall 2017

Prof. David Woodruff

Scribe: Sidhanth Mohanty

For context, this continues the quest that the previous scribe notes started, of performing ℓ_1 regression fast, that is, performing the task of minimizing $||Ax - b||_1$ by suitable choice of x.

1 The Cauchy Distribution

We survey a bunch of the properties of the Cauchy distribution in this section.

The Cauchy distribution, denoted ψ , has probability density function

$$f_{\psi}(z) = \frac{1}{\pi(1+z^2)}$$

for $z \in \mathbb{R}$. Note that this distribution has undefined expectation and infinite variance.

A notable property of the Cauchy distribution is that it is 1-stable: if z_1, z_2, \ldots, z_n are i.i.d. Cauchy, then for all $a \in \mathbb{R}^n$, we have $a_1z_1 + \ldots + a_nz_n \sim ||a||_1 z$ where z is Cauchy. We don't prove this here but drop the words 'Fourier transform' and 'convolution' as hints.

A natural question to ask is how one can generate a Cauchy random variables and it turns out this can be done by taking the ratio of two standard normal random variables.

Recall that R was the dense sketching matrix made of i.i.d. Cauchy random variables from the previous scribe notes. By 1-stability for all rows r of R, we have

$$\langle r, Ax \rangle = \frac{\|Ax\|_1 Z}{d \log d}$$

where Z is Cauchy. In particular, we have

$$\frac{1}{d\log d} \left[\|Ax\|_1 Z_1 \cdots \|Ax\|_1 Z_{d\log d} \right]$$

where $Z_1, Z_2, \ldots, Z_{d \log d}$ are i.i.d. Cauchy.

Now that we have established some basic properties of the Cauchy distribution, for the purposes of regression, we study the term $||RAx||_1$ and prove the sketching theorem.

Proof of Sketching Theorem. We point out that $||RAx||_1 = ||Ax||_1 \frac{\sum_j |Z_j|}{d \log d}$ where $|Z_j|$ are half-Cauchy. The value of $\sum_j |Z_j|$ is $\Omega(d \log d)$ with probability $1 - e^{-cd \log d}$. Indeed, the value of $|Z_j|$ is at least 1 with some constant probability p, and by Chernoff bounds, the the fraction of $|Z_j|$ with value less than 1 is at least $\frac{p}{2}$ with probability at least $1 - e^{-cd \log d}$ by Chernoff bounds. Note that this establishes that for a fixed x, we have $||RAx||_1 \ge ||Ax||_1$ with probability $1 - e^{-cd \log d}$. We shall use a γ -net argument to generalize this to all x. We would be very happy if we could say a statement like " $\sum_j |Z_j|$ is $O(d \log d)$ with high probability", but such a thing isn't true since the Cauchy distribution is heavy tailed, so an alternate approach of proof is called for.

Note that there exists a well conditioned basis of A and without loss of generality say the basis vectors are $A_{*,1}, A_{*,2}, \ldots, A_{*,d}$, then we have

$$||RA_{*i}||_1 = \sum_j |r_j \cdot A_{*i}| = ||A_{*i}||_2 \frac{\sum_j |Z_{i,j}|}{d \log d}$$

where $Z_{i,j}$ is entry (j,i) of the matrix RA.

Let $E_{i,j}$ be the event that $|Z_{i,j}| \leq d^3$. Define $Z'_{i,j} = |Z_{i,j}|$ if $|Z_{i,j}| \leq d^3$ and $Z'_{i,j} = d^3$ otherwise. We now analyze $\mathbb{E}[Z_{i,j}|E_{i,j}] = \mathbb{E}[Z'_{i,j}|E_{i,j}]$, which is given by

$$\mathbb{E}[Z'_{i,j}|E_{i,j}] = \int_0^{d^3} \frac{2z}{\pi(1+z^2)\mathbb{P}[E_{i,j}]} dz$$
$$= \frac{2}{\pi\mathbb{P}[E_{i,j}]} \int_0^{d^3} \frac{z}{1+z^2} dz$$
$$= \frac{2}{\pi\mathbb{P}[E_{i,j}]} \log z \Big|_1^{d^3} + \Theta(1)$$
$$= \Theta(\log d)$$

Let E be the event that for all i, j the event $E_{i,j}$ occurs. We know that

$$\mathbb{P}[\overline{E}] \le \frac{d^2 \log d}{d^3} = \frac{\log d}{d}$$

And this means that

$$\mathbb{P}[E] \ge 1 - \frac{\log d}{d}$$

The goal is to show the sketching theorem by assuming E occurs: then the chance of E not occuring would get absorbed in the $\frac{1}{100}$ failure probability that the sketching theorem permits.

Thus, towards this goal, we analyze $\mathbb{E}[Z'_{i,j}|E_{i,j}]$.

$$\mathbb{E}[Z'_{i,j}|E_{i,j}] = \mathbb{E}[Z'_{i,j}|E_{i,j}, E] \mathbb{P}[E|E_{i,j}] + \mathbb{E}[Z'_{i,j}|E_{i,j}, \overline{E}] \mathbb{P}[\overline{E}|E_{i,j}]$$

$$\geq \mathbb{E}[Z'_{i,j}|E_{i,j}, E] \mathbb{P}[E|E_{i,j}]$$

$$= \mathbb{E}[Z'_{i,j}|E] \left(\frac{\mathbb{P}[E_{i,j}|E] \mathbb{P}[E]}{\mathbb{P}[E_{i,j}]}\right)$$

$$\geq \mathbb{E}[Z'_{i,j}|E] \left(1 - \frac{\log d}{d}\right)$$

So, after all the dust settles, we get $\mathbb{E}[Z'_{i,j}|E] = O(\log d)$. Note that we have

$$||RA_{*i}||_1 = ||A_{*i}||_1 \frac{\sum_j |Z_{i,j}|}{d \log d}$$

and since the expected value of the above expression is $||A_{*i}||_1 \log d$, we know that the expected value of $\sum_i ||RA_{*i}||_1$ is $\log d \sum_i ||A_{*i}||_1$, which means with constant probability $\sum_i ||RA_{*i}||_1$ is at most $O(\log d) \sum_i ||A_{*i}||_1$ via Markov's inequality.

We reiterate that A_{*1}, \ldots, A_{*d} is a well-conditioned basis, and in the earlier scribe notes, we showed the existence of such a basis. We will use the Auerbach basis, which always exists and satisfies two properties: for all x, $||x||_{\infty} \leq ||Ax||_1$ and $\sum_i ||A_{*i}||_1 = d$.

To see why this basis is well-conditioned, consider the following.

$$\frac{\|x\|_1}{d} \le \|x\|_{\infty}$$

$$\le \|Ax\|_1$$

$$\le \left\|\sum_{i=1}^d A_{*i}x_i\right\|_1$$

$$\le \sum_{i=1}^d \|A_{*i}\|_1 |x_i|$$

$$\le \|x\|_{\infty} \cdot \sum_{i=1}^d \|A_{*i}\|_1$$

$$= d\|x\|_{\infty} \le d\|x\|_1$$

We know that $\sum_i \|RA_{*i}\|_1$ is, with constant probability, at most $O(\log d) \sum_i \|A_{*i}\|_1$, which by the Auerbach basis is $O(d \log d)$. Thus, for all x, we have

$$\|RAx\|_{1} \leq \sum_{i} \|RA_{*i}x_{i}\|_{1} \leq \|x\|_{\infty} \sum_{i} \|RA_{*i}\|_{1} = \|x\|_{\infty} O(d\log d) \leq O(d\log d) \|Ax\|_{1}$$

Now, we look back at what we have done so that we don't lose sight of the high level picture. First of all, we showed a constant probability upper bound of $O(d \log d) ||Ax||_1$ on $||RAx||_1$ for all x. And we showed that for any fixed x, $||RAx||_1 \ge ||Ax||_1$ with probability at least $1 - e^{-cd \log d}$, claiming we would generalize this to all x with a γ -net argument.

Set $\gamma = \frac{1}{d \log^3 d}$, so we get a γ -net with $|M| \leq d^{O(d)}$. By union bound on all $y \in M$, we have $||Ry||_1 \geq ||y||_1$. Suppose we take x with unit ℓ_1 norm. There is $y \in M$ satisfying $||Ax - y||_1 \leq \gamma = \frac{1}{d^3 \log d}$. Now, from a chain of inequalities we get

$$\begin{split} \|RAx\|_{1} &\geq \|Ry\|_{1} - \|R(Ax - y)\|_{1} \\ &\geq \|y\|_{1} - O(d\log d) \|Ax - y\|_{1} \\ &\geq \|y\|_{1} - O(d\log d)\gamma \\ &\geq \|y\|_{1} - O\left(\frac{1}{d^{2}}\right) \\ &\geq \frac{\|y\|_{1}}{2} \end{split}$$

The last inequality is justified by $||Ax'||_1 \ge ||x'||_{\infty} \ge \frac{||x'||}{d} = \frac{1}{d}$.

Note that since $||Ax - y||_1 \leq \gamma$, which means $||Ax - y||_1 + ||y||_1 - \gamma \leq 2||RAx||_1$. It follows that $\frac{1}{2}||Ax - y||_1 + \frac{1}{2}||y||_1 \leq 2||RAx||_1$. By triangle inequality, we get that

$$\frac{1}{2} \|Ax\|_1 \le 2 \|RAx\|_1$$

which means $||RAx||_1 \ge \frac{1}{2} ||Ax||_1$.