CS 15-859: Algorithms for Big Data	Fall 2017	
Lecture 6-2-10/12/2017		
Prof. David Woodruff		Scribe: Sidhanth Mohanty

For context, this continues the quest that the previous scribe notes started, of performing ℓ_{1} regression fast, that is, performing the task of minimizing $\|A x-b\|_{1}$ by suitable choice of x.

1 The Cauchy Distribution

We survey a bunch of the properties of the Cauchy distribution in this section.
The Cauchy distribution, denoted ψ, has probability density function

$$
f_{\psi}(z)=\frac{1}{\pi\left(1+z^{2}\right)}
$$

for $z \in \mathbb{R}$. Note that this distribution has undefined expectation and infinite variance.
A notable property of the Cauchy distribution is that it is 1 -stable: if $z_{1}, z_{2}, \ldots, z_{n}$ are i.i.d. Cauchy, then for all $a \in \mathbb{R}^{n}$, we have $a_{1} z_{1}+\ldots+a_{n} z_{n} \sim\|a\|_{1} z$ where z is Cauchy. We don't prove this here but drop the words 'Fourier transform' and 'convolution' as hints.

A natural question to ask is how one can generate a Cauchy random variables and it turns out this can be done by taking the ratio of two standard normal random variables.

Recall that R was the dense sketching matrix made of i.i.d. Cauchy random variables from the previous scribe notes. By 1-stability for all rows r of R, we have

$$
\langle r, A x\rangle=\frac{\|A x\|_{1} Z}{d \log d}
$$

where Z is Cauchy. In particular, we have

$$
\frac{1}{d \log d}\left[\|A x\|_{1} Z_{1} \cdots\|A x\|_{1} Z_{d \log d}\right]
$$

where $Z_{1}, Z_{2}, \ldots, Z_{d \log d}$ are i.i.d. Cauchy.
Now that we have established some basic properties of the Cauchy distribution, for the purposes of regression, we study the term $\|R A x\|_{1}$ and prove the sketching theorem.

Proof of Sketching Theorem. We point out that $\|R A x\|_{1}=\|A x\|_{1} \frac{\sum_{j}\left|Z_{j}\right|}{d \log d}$ where $\left|Z_{j}\right|$ are half-Cauchy. The value of $\sum_{j}\left|Z_{j}\right|$ is $\Omega(d \log d)$ with probability $1-e^{-c d \log d)}$. Indeed, the value of $\left|Z_{j}\right|$ is at least 1 with some constant probability p, and by Chernoff bounds, the the fraction of $\left|Z_{j}\right|$ with value less than 1 is at least $\frac{p}{2}$ with probability at least $1-e^{-c d \log d}$ by Chernoff bounds. Note that this establishes that for a fixed x, we have $\|R A x\|_{1} \geq\|A x\|_{1}$ with probability $1-e^{-c d \log d}$. We shall use a γ-net argument to generalize this to all x.

We would be very happy if we could say a statement like " $\sum_{j}\left|Z_{j}\right|$ is $O(d \log d)$ with high probability", but such a thing isn't true since the Cauchy distribution is heavy tailed, so an alternate approach of proof is called for.
Note that there exists a well conditioned basis of A and without loss of generality say the basis vectors are $A_{*, 1}, A_{*, 2}, \ldots, A_{*, d}$, then we have

$$
\left\|R A_{* i}\right\|_{1}=\sum_{j}\left|r_{j} \cdot A_{* i}\right|=\left\|A_{* i}\right\|_{2} \frac{\sum_{j}\left|Z_{i, j}\right|}{d \log d}
$$

where $Z_{i, j}$ is entry (j, i) of the matrix $R A$.
Let $E_{i, j}$ be the event that $\left|Z_{i, j}\right| \leq d^{3}$. Define $Z_{i, j}^{\prime}=\left|Z_{i, j}\right|$ if $\left|Z_{i, j}\right| \leq d^{3}$ and $Z_{i, j}^{\prime}=d^{3}$ otherwise.
We now analyze $\mathbb{E}\left[Z_{i, j} \mid E_{i, j}\right]=\mathbb{E}\left[Z_{i, j}^{\prime} \mid E_{i, j}\right]$, which is given by

$$
\begin{aligned}
\mathbb{E}\left[Z_{i, j}^{\prime} \mid E_{i, j}\right] & =\int_{0}^{d^{3}} \frac{2 z}{\pi\left(1+z^{2}\right) \mathbb{P}\left[E_{i, j}\right]} d z \\
& =\frac{2}{\pi \mathbb{P}\left[E_{i, j}\right]} \int_{0}^{d^{3}} \frac{z}{1+z^{2}} d z \\
& =\left.\frac{2}{\pi \mathbb{P}\left[E_{i, j}\right]} \log z\right|_{1} ^{d^{3}}+\Theta(1) \\
& =\Theta(\log d)
\end{aligned}
$$

Let E be the event that for all i, j the event $E_{i, j}$ occurs. We know that

$$
\mathbb{P}[\bar{E}] \leq \frac{d^{2} \log d}{d^{3}}=\frac{\log d}{d}
$$

And this means that

$$
\mathbb{P}[E] \geq 1-\frac{\log d}{d}
$$

The goal is to show the sketching theorem by assuming E occurs: then the chance of E not occuring would get absorbed in the $\frac{1}{100}$ failure probability that the sketching theorem permits.

Thus, towards this goal, we analyze $\mathbb{E}\left[Z_{i, j}^{\prime} \mid E_{i, j}\right]$.

$$
\begin{aligned}
\mathbb{E}\left[Z_{i, j}^{\prime} \mid E_{i, j}\right] & =\mathbb{E}\left[Z_{i, j}^{\prime} \mid E_{i, j}, E\right] \mathbb{P}\left[E \mid E_{i, j}\right]+\mathbb{E}\left[Z_{i, j}^{\prime} \mid E_{i, j}, \bar{E}\right] \mathbb{P}\left[\bar{E} \mid E_{i, j}\right] \\
& \geq \mathbb{E}\left[Z_{i, j}^{\prime} \mid E_{i, j}, E\right] \mathbb{P}\left[E \mid E_{i, j}\right] \\
& =\mathbb{E}\left[Z_{i, j}^{\prime} \mid E\right]\left(\frac{\mathbb{P}\left[E_{i, j} \mid E\right] \mathbb{P}[E]}{\mathbb{P}\left[E_{i, j}\right]}\right) \\
& \geq \mathbb{E}\left[Z_{i, j}^{\prime} \mid E\right]\left(1-\frac{\log d}{d}\right)
\end{aligned}
$$

So, after all the dust settles, we get $\mathbb{E}\left[Z_{i, j}^{\prime} \mid E\right]=O(\log d)$.
Note that we have

$$
\left\|R A_{* i}\right\|_{1}=\left\|A_{* i}\right\|_{1} \frac{\sum_{j}\left|Z_{i, j}\right|}{d \log d}
$$

and since the expected value of the above expression is $\left\|A_{* i}\right\|_{1} \log d$, we know that the expected value of $\sum_{i}\left\|R A_{* i}\right\|_{1}$ is $\log d \sum_{i}\left\|A_{* i}\right\|_{1}$, which means with constant probability $\sum_{i}\left\|R A_{* i}\right\|_{1}$ is at most $O(\log d) \sum_{i}\left\|A_{* i}\right\|_{1}$ via Markov's inequality.
We reiterate that $A_{* 1}, \ldots, A_{* d}$ is a well-conditioned basis, and in the earlier scribe notes, we showed the existence of such a basis. We will use the Auerbach basis, which always exists and satisfies two properties: for all $x,\|x\|_{\infty} \leq\|A x\|_{1}$ and $\sum_{i}\left\|A_{* i}\right\|_{1}=d$.

To see why this basis is well-conditioned, consider the following.

$$
\begin{aligned}
\frac{\|x\|_{1}}{d} & \leq\|x\|_{\infty} \\
& \leq\|A x\|_{1} \\
& \leq\left\|\sum_{i=1}^{d} A_{* i} x_{i}\right\|_{1} \\
& \leq \sum_{i=1}^{d}\left\|A_{* i}\right\|_{1}\left|x_{i}\right| \\
& \leq\|x\|_{\infty} \cdot \sum_{i=1}^{d}\left\|A_{* i}\right\|_{1} \\
& =d\|x\|_{\infty} \leq d\|x\|_{1}
\end{aligned}
$$

We know that $\sum_{i}\left\|R A_{* i}\right\|_{1}$ is, with constant probability, at most $O(\log d) \sum_{i}\left\|A_{* i}\right\|_{1}$, which by the Auerbach basis is $O(d \log d)$. Thus, for all x, we have

$$
\|R A x\|_{1} \leq \sum_{i}\left\|R A_{* i} x_{i}\right\|_{1} \leq\|x\|_{\infty} \sum_{i}\left\|R A_{* i}\right\|_{1}=\|x\|_{\infty} O(d \log d) \leq O(d \log d)\|A x\|_{1}
$$

Now, we look back at what we have done so that we don't lose sight of the high level picture. First of all, we showed a constant probability upper bound of $O(d \log d)\|A x\|_{1}$ on $\|R A x\|_{1}$ for all x. And we showed that for any fixed $x,\|R A x\|_{1} \geq\|A x\|_{1}$ with probability at least $1-e^{-c d \log d}$, claiming we would generalize this to all x with a γ-net argument.
Set $\gamma=\frac{1}{d \log ^{3} d}$, so we get a γ-net with $|M| \leq d^{O(d)}$. By union bound on all $y \in M$, we have $\|R y\|_{1} \geq$ $\|y\|_{1}$. Suppose we take x with unit ℓ_{1} norm. There is $y \in M$ satisfying $\|A x-y\|_{1} \leq \gamma=\frac{1}{d^{3} \log d}$.

Now, from a chain of inequalities we get

$$
\begin{aligned}
\|R A x\|_{1} & \geq\|R y\|_{1}-\|R(A x-y)\|_{1} \\
& \geq\|y\|_{1}-O(d \log d)\|A x-y\|_{1} \\
& \geq\|y\|_{1}-O(d \log d) \gamma \\
& \geq\|y\|_{1}-O\left(\frac{1}{d^{2}}\right) \\
& \geq \frac{\|y\|_{1}}{2}
\end{aligned}
$$

The last inequality is justified by $\left\|A x^{\prime}\right\|_{1} \geq\left\|x^{\prime}\right\|_{\infty} \geq \frac{\left\|x^{\prime}\right\|}{d}=\frac{1}{d}$.

Note that since $\|A x-y\|_{1} \leq \gamma$, which means $\|A x-y\|_{1}+\|y\|_{1}-\gamma \leq 2\|R A x\|_{1}$. It follows that $\frac{1}{2}\|A x-y\|_{1}+\frac{1}{2}\|y\|_{1} \leq 2\|R A x\|_{1}$. By triangle inequality, we get that

$$
\frac{1}{2}\|A x\|_{1} \leq 2\|R A x\|_{1}
$$

which means $\|R A x\|_{1} \geq \frac{1}{2}\|A x\|_{1}$.

