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1 /i-regression preliminaries

Given a n x d matrix A, and a vector b, the goal of ¢i-regression is to find x* minimizing the
value of ||[Az — b||;. We note that in this problem, the cost is less sensitive to outliers than least
squares regression, and depending on the application, this might be a desirable property making
{1-regression more suitable than least squares.

We note that if our goal is simply to solve this problem in polynomial time, then we can do so by
writing a linear program. We introduce two new vectors of variables a®™ and a~ and solve the
following LP.

Minimize 1-(a™+a)
Subject to Az +a™ +a” =b
at,a” >0

Note that this LP takes poly(n,d) time to solve.

However, as always, we are curious about whether we can solve this problem better or not. And a
natural tool to turn to is sketching. And the answer is, yes, we can indeed solve this problem faster
in approximation via sketching. As a first step we explore the geometry of ¢; space a bit more.

2 Geometry of /; space

2.1 Lowner-John Theorem and Well Conditioned Bases

All our fast algorithms s regression hinge on the following fact. For an n x d matrix A, we can
always choose a n x d matrix U with orthonormal columns where A can be written as UW and
|Uz|2 = ||Az||2 for all z € R?.

And thus naturally, we ask if can we find a U for which A = UW and ||Uz||; = ||z||;. Unfortunately,
this isn’t possible. What is true, though, is that there is U with orthogonal columns and A = UW
where the following inequality holds:

lll2 < IUz[l < Vol

and this is easy to prove via the Cauchy-Schwartz inequality. E]

Hjy|l1 can be written as the dot product of y and a vector where all entries are +1. Cauchy-Schwartz then tells us
this is at most /n||y||2.



This massive amount of distortion is unsuitable for our purposes, and we do some work to strengthen
this inequality to
[l

Vd

which ends up being good enough for our purposes.

< |Uz|x < V|||

Let’s write A as QW where @ has full column rank, and define ||z||g1 = ||Qz]/1: |lcdot||g,1 ends up
being a norm.

Let C = {z € R%: ||z]|g1 < 1| be the unit ball of norm | - ||g,1. C is convex, which can be seen by
taking x,y € C'and 0 < a <1 to get

Q1+ (1 —a)yllga
Q1+ (1 —=a)lyllga

loz + (1 = a)yllgx < [lax]

= o]
<1
which means az + (1 — a)y is in C.

Another property of C is that it is symmetric around the origin, because for any x € C, we have
= zllgr = llzller < 1.

Working towards our inequality, we state the Lowner-John Theorem.
Theorem 1 (Lowner-John). For all convex bodies C, we can find ellipsoid E such that E C C' C
VAE where E = {z € R : 2TGTGz < 1}.

We take the unit ball under the || - ||g,1 norm, and use the Léwner-John theorem to find an ellipsoid
such that
VTGTGz < |2]lg1 < VdzTGTG2

Next, we define U as QG ™!, where U satisfies what is called the ‘well-conditioned basis’ property. E|
Take some x and define z = G~'z. Then we get
Uz = QG x|l = Q=] = |Izllo.
Now, note that
AGTGz =27 (G Y GTG(G N2 = 2Tz = ||z||3
This gives us ||z|2 < |Uz|j1 < V/d|z||2, which from norm inequalities gives

[ !

Vd

< |Uz|x < V|||

2.2 Net for /;-ball

Consider the unit ¢; ball B. We call N C B a vy-net if for all z € B, there is y € N such that
|l —yll1 <. A suitable N can be constructed greedily by picking any y € B where y is more than

ZNote that G is invertible since the ellipsoid must be full dimensional as @ is full rank, which makes the unit ball
of the norm we defined full dimensional.



~ away from all members of N, and adding it to N while there such a point y. We note that the ¢;

ball of radius 3 around every point is contained in the £; ball of radius 1 4 3 around 0. We note

that by our construction every pair of points in IV are distance at least v apart, which means that
all the balls we drew around each point are disjoint.

Since the ratio of the volumes of d-dimensional £; balls of radius 14 3 and 3 is upper bounded by

(1+3)°
(3)"

so the above quantity also serves as an upper bound to the size of N.

2.3 Net for /; subspace

Let A = UW for a well-conditioned basis U where vectors are scaled so that for all x

2l < [|Uz]lr < dlj]x

e d
Now, let N be a (J)-net for the unit ¢;-ball B and let M = {Uz|z € N} so |M| < (1(+72d2 . We
2d
claim that for every x € B, there is y € M for which |[Uz — y|| < . To see why this is true,
pick #’ € N for which ||z’ — z[j < 7, and by the well-conditioned basis property of U, we know

|U (2" — x)||1 <~ which means that ||[Uz — y||; < 7.

3 Towards an Algorithm

We start out with a very high level algorithm overview and delve into details afterwards.

e Compute poly(d)-approximate solution to the problem: that is, we find z’ such that

| Az" — b||; < poly(d) min || Az — b||;
z€Rd

Compute a well-conditioned basis, that is write A as UW with the condition that for all
z € R? we have

< |[Uz|[1 < poly(d)||z(x

Compute b/ = b — Ax’.

Consider the optimization problem min, ||[Uxz — b’||; and sample poly (g) rows of this problem
with probabilities proportional to the ¢; norm of UlY (¥ is appended as a column to U).

Now run the generic LP on the subsampled rows: this runs efficiently.

As motivation for considering the optimization problem ||[Uz — bl|1, we show that

min ||Az — b||y = min |Uz —||;
TR zeRd



whose proof is via the following chain of equalities.

min [|[Az —V/||= min |[[A(z +2) —b|1
zeR? z+az'€RY
= min |Az + Az’ — b||
z€eR?
= min |4z — V|1
zeR?
= min_[|AW 'z — V|
W—1lgeRd

= min ||Uz — V|
zeR4

Once the first two steps and the sampling step are made more efficient, we are happy since the rest
can be done in nnz(A) + poly (g) time.

3.1 Finding an approximate solution fast

Now, towards the goal of finding an approximate solution quickly we consider the following theorem.

Theorem 2 (Sketching Theorem). There is a probability space over dlogd x n matrices R such

that for any n x d matriz A, with probability at least 19—(%, we have for all x:

[Az]1 < |[RAz[|y < dlogd|| Az

We note that this embedding simultaneously enjoys linearity and preserving the lengths of an infinite
number of vectors and is also independent of A.

We defer the proof to a later section, in the next set of notes.

The computation of a dlogd approximation can be done in two simple steps:

e Compute RA and Rb.

e Solve argmin,cpa ||[RAx — Rb||;.

The sketching theorem applied to A o b implies that 2’ is a dlog d approximation. Since RA and Rb
have dlogd rows, so we can solve the £; regression problem efficiently.

3.2 Computing a well-conditioned basis

The following algorithm accomplishes it.

e Let R be a f1-sketching matrix. Compute RA.

e Compute W so that RAW is orthonormal.



e U = AW is well-conditioned because

AWz < ||RAWz||1 < /dlogd||RAW||2 = /dlogd| z|2 < V/dlogd| x|

and " "
[RAW x|y _ [[RAWz|y _ lzfla o [Jz]s

dlogd ~ dlogd  dlogd ~ d3/2logd

AWz =

A dense R that works is when all the entries are i.i.d. Cauchy random variables, scaled by ﬁgd.
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