
CS 15-859: Algorithms for Big Data Fall 2017

Lecture 6-1 — 10/12/2017
Prof. David Woodruff Scribe: Sidhanth Mohanty

1 `1-regression preliminaries

Given a n × d matrix A, and a vector b, the goal of `1-regression is to find x∗ minimizing the
value of ‖Ax− b‖1. We note that in this problem, the cost is less sensitive to outliers than least
squares regression, and depending on the application, this might be a desirable property making
`1-regression more suitable than least squares.

We note that if our goal is simply to solve this problem in polynomial time, then we can do so by
writing a linear program. We introduce two new vectors of variables α+ and α− and solve the
following LP.

Minimize ~1 · (α+ + α−)
Subject to Ax+ α+ + α− = b

α+,α− ≥ 0

Note that this LP takes poly(n, d) time to solve.

However, as always, we are curious about whether we can solve this problem better or not. And a
natural tool to turn to is sketching. And the answer is, yes, we can indeed solve this problem faster
in approximation via sketching. As a first step we explore the geometry of `1 space a bit more.

2 Geometry of `1 space

2.1 Löwner-John Theorem and Well Conditioned Bases

All our fast algorithms `2 regression hinge on the following fact. For an n × d matrix A, we can
always choose a n × d matrix U with orthonormal columns where A can be written as UW and
‖Ux‖2 = ‖Ax‖2 for all x ∈ Rd.

And thus naturally, we ask if can we find a U for which A = UW and ‖Ux‖1 = ‖x‖1. Unfortunately,
this isn’t possible. What is true, though, is that there is U with orthogonal columns and A = UW
where the following inequality holds:

‖x‖2 ≤ ‖Ux‖1 ≤
√
n‖x‖2

and this is easy to prove via the Cauchy-Schwartz inequality. 1

1‖y‖1 can be written as the dot product of y and a vector where all entries are ±1. Cauchy-Schwartz then tells us
this is at most

√
n‖y‖2.
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This massive amount of distortion is unsuitable for our purposes, and we do some work to strengthen
this inequality to

‖x‖1√
d
≤ ‖Ux‖1 ≤

√
d‖x‖1

which ends up being good enough for our purposes.

Let’s write A as QW where Q has full column rank, and define ‖z‖Q,1 = ‖Qz‖1: ‖cdot‖Q,1 ends up
being a norm.

Let C = {z ∈ Rd : ‖z‖Q,1 ≤ 1‖ be the unit ball of norm ‖ · ‖Q,1. C is convex, which can be seen by
taking x, y ∈ C and 0 ≤ α ≤ 1 to get

‖αx+ (1− α)y‖Q,1 ≤ ‖αx‖Q,1 + ‖(1− α)y‖Q,1
= α‖x‖Q,1 + (1− α)‖y‖Q,1
≤ 1

which means αx+ (1− α)y is in C.

Another property of C is that it is symmetric around the origin, because for any x ∈ C, we have
‖ − x‖Q,1 = ‖x‖Q,1 ≤ 1.

Working towards our inequality, we state the Löwner-John Theorem.

Theorem 1 (Löwner-John). For all convex bodies C, we can find ellipsoid E such that E ⊆ C ⊆√
dE where E = {z ∈ Rd : zTGTGz ≤ 1}.

We take the unit ball under the ‖ · ‖Q,1 norm, and use the Löwner-John theorem to find an ellipsoid
such that √

zTGTGz ≤ ‖z‖Q,1 ≤
√
dzTGTGz

Next, we define U as QG−1, where U satisfies what is called the ‘well-conditioned basis’ property. 2

Take some x and define z = G−1x. Then we get

‖Ux‖1 = ‖QG−1x‖1 = ‖Qz‖1 = ‖z‖Q,1

Now, note that
zTGTGz = xT (G−1)TGTG(G−1)x = xTx = ‖x‖22

This gives us ‖x‖2 ≤ ‖Ux‖1 ≤
√
d‖x‖2, which from norm inequalities gives

‖x‖1√
d
≤ ‖Ux‖1 ≤

√
d‖x‖1

2.2 Net for `1-ball

Consider the unit `1 ball B. We call N ⊆ B a γ-net if for all x ∈ B, there is y ∈ N such that
‖x− y‖1 ≤ γ. A suitable N can be constructed greedily by picking any y ∈ B where y is more than

2Note that G is invertible since the ellipsoid must be full dimensional as Q is full rank, which makes the unit ball
of the norm we defined full dimensional.
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γ away from all members of N , and adding it to N while there such a point y. We note that the `1
ball of radius γ

2 around every point is contained in the `1 ball of radius 1 + γ
2 around 0. We note

that by our construction every pair of points in N are distance at least γ apart, which means that
all the balls we drew around each point are disjoint.

Since the ratio of the volumes of d-dimensional `1 balls of radius 1 + γ
2 and γ

2 is upper bounded by(
1 + γ

2
)d(γ

2
)d

so the above quantity also serves as an upper bound to the size of N .

2.3 Net for `1 subspace

Let A = UW for a well-conditioned basis U where vectors are scaled so that for all x

‖x‖1 ≤ ‖Ux‖1 ≤ d‖x‖1

Now, let N be a
(γ
d

)
-net for the unit `1-ball B and let M = {Ux|x ∈ N} so |M | ≤ (1+ γ

2d)
d

( γ
2d)

d . We

claim that for every x ∈ B, there is y ∈ M for which ‖Ux − y‖ ≤ γ. To see why this is true,
pick x′ ∈ N for which ‖x′ − x‖2 ≤ γ

d , and by the well-conditioned basis property of U , we know
‖U(x′ − x)‖1 ≤ γ which means that ‖Ux− y‖1 ≤ γ.

3 Towards an Algorithm

We start out with a very high level algorithm overview and delve into details afterwards.

• Compute poly(d)-approximate solution to the problem: that is, we find x′ such that

‖Ax′ − b‖1 ≤ poly(d) min
x∈Rd

‖Ax− b‖1

• Compute a well-conditioned basis, that is write A as UW with the condition that for all
x ∈ Rd we have

‖x‖1
poly(d) ≤ ‖Ux‖1 ≤ poly(d)‖x‖1

• Compute b′ = b−Ax′.

• Consider the optimization problem minx ‖Ux− b′‖1 and sample poly
(
d
ε

)
rows of this problem

with probabilities proportional to the `1 norm of U |b′ (b′ is appended as a column to U).

• Now run the generic LP on the subsampled rows: this runs efficiently.

As motivation for considering the optimization problem ‖Ux− b‖1, we show that

min
x∈Rd

‖Ax− b‖1 = min
x∈Rd

‖Ux− b′‖1
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whose proof is via the following chain of equalities.

min
x∈Rd

‖Ax− b′‖ = min
x+x′∈Rd

‖A(x+ x′)− b‖1

= min
x∈Rd

‖Ax+Ax′ − b‖1

= min
x∈Rd

‖Ax− b′‖1

= min
W−1x∈Rd

‖AW−1x− b′‖1

= min
x∈Rd

‖Ux− b′‖1

Once the first two steps and the sampling step are made more efficient, we are happy since the rest
can be done in nnz(A) + poly

(
d
ε

)
time.

3.1 Finding an approximate solution fast

Now, towards the goal of finding an approximate solution quickly we consider the following theorem.

Theorem 2 (Sketching Theorem). There is a probability space over d log d× n matrices R such
that for any n× d matrix A, with probability at least 99

100 , we have for all x:

‖Ax‖1 ≤ ‖RAx‖1 ≤ d log d‖Ax‖1

We note that this embedding simultaneously enjoys linearity and preserving the lengths of an infinite
number of vectors and is also independent of A.

We defer the proof to a later section, in the next set of notes.

The computation of a d log d approximation can be done in two simple steps:

• Compute RA and Rb.

• Solve arg minx∈Rd ‖RAx−Rb‖1.

The sketching theorem applied to A ◦ b implies that x′ is a d log d approximation. Since RA and Rb
have d log d rows, so we can solve the `1 regression problem efficiently.

3.2 Computing a well-conditioned basis

The following algorithm accomplishes it.

• Let R be a `1-sketching matrix. Compute RA.

• Compute W so that RAW is orthonormal.
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• U = AW is well-conditioned because

‖AWx‖1 ≤ ‖RAWx‖1 ≤
√
d log d‖RAW‖2 =

√
d log d‖x‖2 ≤

√
d log d‖x‖1

and
‖AWx‖1 ≥

‖RAWx‖1
d log d ≥ ‖RAWx‖1

d log d = ‖x‖2
d log d ≥

‖x‖1
d3/2 log d

A dense R that works is when all the entries are i.i.d. Cauchy random variables, scaled by 1
d log d .
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