CS 15-859: Algorithms for Big Data	Fall 2017	
	Lecture 6-1-10/12/2017	
Prof. David Woodruff		Scribe: Sidhanth Mohanty

$1 \quad \ell_{1}$-regression preliminaries

Given a $n \times d$ matrix A, and a vector b, the goal of ℓ_{1}-regression is to find x^{*} minimizing the value of $\|A x-b\|_{1}$. We note that in this problem, the cost is less sensitive to outliers than least squares regression, and depending on the application, this might be a desirable property making ℓ_{1}-regression more suitable than least squares.

We note that if our goal is simply to solve this problem in polynomial time, then we can do so by writing a linear program. We introduce two new vectors of variables $\boldsymbol{\alpha}^{+}$and $\boldsymbol{\alpha}^{-}$and solve the following LP.

$$
\begin{array}{rr}
\text { Minimize } & \overrightarrow{\mathbf{1}} \cdot\left(\boldsymbol{\alpha}^{+}+\boldsymbol{\alpha}^{-}\right) \\
\text {Subject to } & A x+\boldsymbol{\alpha}^{+}+\boldsymbol{\alpha}^{-}=b \\
\boldsymbol{\alpha}^{+}, \boldsymbol{\alpha}^{-} \geq 0
\end{array}
$$

Note that this LP takes poly (n, d) time to solve.
However, as always, we are curious about whether we can solve this problem better or not. And a natural tool to turn to is sketching. And the answer is, yes, we can indeed solve this problem faster in approximation via sketching. As a first step we explore the geometry of ℓ_{1} space a bit more.

2 Geometry of ℓ_{1} space

2.1 Löwner-John Theorem and Well Conditioned Bases

All our fast algorithms ℓ_{2} regression hinge on the following fact. For an $n \times d$ matrix A, we can always choose a $n \times d$ matrix U with orthonormal columns where A can be written as $U W$ and $\|U x\|_{2}=\|A x\|_{2}$ for all $x \in \mathbb{R}^{d}$.

And thus naturally, we ask if can we find a U for which $A=U W$ and $\|U x\|_{1}=\|x\|_{1}$. Unfortunately, this isn't possible. What is true, though, is that there is U with orthogonal columns and $A=U W$ where the following inequality holds:

$$
\|x\|_{2} \leq\|U x\|_{1} \leq \sqrt{n}\|x\|_{2}
$$

and this is easy to prove via the Cauchy-Schwartz inequality. ${ }^{1}$

[^0]This massive amount of distortion is unsuitable for our purposes, and we do some work to strengthen this inequality to

$$
\frac{\|x\|_{1}}{\sqrt{d}} \leq\|U x\|_{1} \leq \sqrt{d}\|x\|_{1}
$$

which ends up being good enough for our purposes.
Let's write A as $Q W$ where Q has full column rank, and define $\|z\|_{Q, 1}=\|Q z\|_{1}:\|c d o t\|_{Q, 1}$ ends up being a norm.
Let $C=\left\{z \in \mathbb{R}^{d}:\|z\|_{Q, 1} \leq 1 \|\right.$ be the unit ball of norm $\|\cdot\|_{Q, 1} . C$ is convex, which can be seen by taking $x, y \in C$ and $0 \leq \alpha \leq 1$ to get

$$
\begin{aligned}
\|\alpha x+(1-\alpha) y\|_{Q, 1} & \leq\|\alpha x\|_{Q, 1}+\|(1-\alpha) y\|_{Q, 1} \\
& =\alpha\|x\|_{Q, 1}+(1-\alpha)\|y\|_{Q, 1} \\
& \leq 1
\end{aligned}
$$

which means $\alpha x+(1-\alpha) y$ is in C.
Another property of C is that it is symmetric around the origin, because for any $x \in C$, we have $\|-x\|_{Q, 1}=\|x\|_{Q, 1} \leq 1$.
Working towards our inequality, we state the Löwner-John Theorem.
Theorem 1 (Löwner-John). For all convex bodies C, we can find ellipsoid E such that $E \subseteq C \subseteq$ $\sqrt{d} E$ where $E=\left\{z \in \mathbb{R}^{d}: z^{T} G^{T} G z \leq 1\right\}$.

We take the unit ball under the $\|\cdot\|_{Q, 1}$ norm, and use the Löwner-John theorem to find an ellipsoid such that

$$
\sqrt{z^{T} G^{T} G z} \leq\|z\|_{Q, 1} \leq \sqrt{d} z^{T} G^{T} G z
$$

Next, we define U as $Q G^{-1}$, where U satisfies what is called the 'well-conditioned basis' property. ${ }^{2}$ Take some x and define $z=G^{-1} x$. Then we get

$$
\|U x\|_{1}=\left\|Q G^{-1} x\right\|_{1}=\|Q z\|_{1}=\|z\|_{Q, 1}
$$

Now, note that

$$
z^{T} G^{T} G z=x^{T}\left(G^{-1}\right)^{T} G^{T} G\left(G^{-1}\right) x=x^{T} x=\|x\|_{2}^{2}
$$

This gives us $\|x\|_{2} \leq\|U x\|_{1} \leq \sqrt{d}\|x\|_{2}$, which from norm inequalities gives

$$
\frac{\|x\|_{1}}{\sqrt{d}} \leq\|U x\|_{1} \leq \sqrt{d}\|x\|_{1}
$$

2.2 Net for ℓ_{1}-ball

Consider the unit ℓ_{1} ball B. We call $N \subseteq B$ a γ-net if for all $x \in B$, there is $y \in N$ such that $\|x-y\|_{1} \leq \gamma$. A suitable N can be constructed greedily by picking any $y \in B$ where y is more than

[^1]γ away from all members of N, and adding it to N while there such a point y. We note that the ℓ_{1} ball of radius $\frac{\gamma}{2}$ around every point is contained in the ℓ_{1} ball of radius $1+\frac{\gamma}{2}$ around $\mathbf{0}$. We note that by our construction every pair of points in N are distance at least γ apart, which means that all the balls we drew around each point are disjoint.
Since the ratio of the volumes of d-dimensional ℓ_{1} balls of radius $1+\frac{\gamma}{2}$ and $\frac{\gamma}{2}$ is upper bounded by
$$
\frac{\left(1+\frac{\gamma}{2}\right)^{d}}{\left(\frac{\gamma}{2}\right)^{d}}
$$
so the above quantity also serves as an upper bound to the size of N.

2.3 Net for ℓ_{1} subspace

Let $A=U W$ for a well-conditioned basis U where vectors are scaled so that for all x

$$
\|x\|_{1} \leq\|U x\|_{1} \leq d\|x\|_{1}
$$

Now, let N be a $\left(\frac{\gamma}{d}\right)$-net for the unit ℓ_{1}-ball B and let $M=\{U x \mid x \in N\}$ so $|M| \leq \frac{\left(1+\frac{\gamma}{2 d}\right)^{d}}{\left(\frac{\gamma}{2 d}\right)^{d}}$. We claim that for every $x \in B$, there is $y \in M$ for which $\|U x-y\| \leq \gamma$. To see why this is true, pick $x^{\prime} \in N$ for which $\left\|x^{\prime}-x\right\|_{2} \leq \frac{\gamma}{d}$, and by the well-conditioned basis property of U, we know $\left\|U\left(x^{\prime}-x\right)\right\|_{1} \leq \gamma$ which means that $\|U x-y\|_{1} \leq \gamma$.

3 Towards an Algorithm

We start out with a very high level algorithm overview and delve into details afterwards.

- Compute poly (d)-approximate solution to the problem: that is, we find x^{\prime} such that

$$
\left\|A x^{\prime}-b\right\|_{1} \leq \operatorname{poly}(d) \min _{x \in \mathbb{R}^{d}}\|A x-b\|_{1}
$$

- Compute a well-conditioned basis, that is write A as $U W$ with the condition that for all $x \in \mathbb{R}^{d}$ we have

$$
\frac{\|x\|_{1}}{\operatorname{poly}(d)} \leq\|U x\|_{1} \leq \operatorname{poly}(d)\|x\|_{1}
$$

- Compute $b^{\prime}=b-A x^{\prime}$.
- Consider the optimization problem $\min _{x}\left\|U x-b^{\prime}\right\|_{1}$ and sample poly $\left(\frac{d}{\varepsilon}\right)$ rows of this problem with probabilities proportional to the ℓ_{1} norm of $U \mid b^{\prime}$ (b^{\prime} is appended as a column to U).
- Now run the generic LP on the subsampled rows: this runs efficiently.

As motivation for considering the optimization problem $\|U x-b\|_{1}$, we show that

$$
\min _{x \in \mathbb{R}^{d}}\|A x-b\|_{1}=\min _{x \in \mathbb{R}^{d}}\left\|U x-b^{\prime}\right\|_{1}
$$

whose proof is via the following chain of equalities.

$$
\begin{aligned}
\min _{x \in \mathbb{R}^{d}}\left\|A x-b^{\prime}\right\| & =\min _{x+x^{\prime} \in \mathbb{R}^{d}}\left\|A\left(x+x^{\prime}\right)-b\right\|_{1} \\
& =\min _{x \in \mathbb{R}^{d}}\left\|A x+A x^{\prime}-b\right\|_{1} \\
& =\min _{x \in \mathbb{R}^{d}}\left\|A x-b^{\prime}\right\|_{1} \\
& =\min _{W^{-1} x \in \mathbb{R}^{d}}\left\|A W^{-1} x-b^{\prime}\right\|_{1} \\
& =\min _{x \in \mathbb{R}^{d}}\left\|U x-b^{\prime}\right\|_{1}
\end{aligned}
$$

Once the first two steps and the sampling step are made more efficient, we are happy since the rest can be done in $n n z(A)+\operatorname{poly}\left(\frac{d}{\varepsilon}\right)$ time.

3.1 Finding an approximate solution fast

Now, towards the goal of finding an approximate solution quickly we consider the following theorem.
Theorem 2 (Sketching Theorem). There is a probability space over $d \log d \times n$ matrices R such that for any $n \times d$ matrix A, with probability at least $\frac{99}{100}$, we have for all x :

$$
\|A x\|_{1} \leq\|R A x\|_{1} \leq d \log d\|A x\|_{1}
$$

We note that this embedding simultaneously enjoys linearity and preserving the lengths of an infinite number of vectors and is also independent of A.

We defer the proof to a later section, in the next set of notes.
The computation of a $d \log d$ approximation can be done in two simple steps:

- Compute $R A$ and $R b$.
- Solve arg $\min _{x \in \mathbb{R}^{d}}\|R A x-R b\|_{1}$.

The sketching theorem applied to $A \circ b$ implies that x^{\prime} is a $d \log d$ approximation. Since $R A$ and $R b$ have $d \log d$ rows, so we can solve the ℓ_{1} regression problem efficiently.

3.2 Computing a well-conditioned basis

The following algorithm accomplishes it.

- Let R be a ℓ_{1}-sketching matrix. Compute $R A$.
- Compute W so that $R A W$ is orthonormal.
- $U=A W$ is well-conditioned because

$$
\|A W x\|_{1} \leq\|R A W x\|_{1} \leq \sqrt{d \log d}\|R A W\|_{2}=\sqrt{d \log d}\|x\|_{2} \leq \sqrt{d \log d}\|x\|_{1}
$$

and

$$
\|A W x\|_{1} \geq \frac{\|R A W x\|_{1}}{d \log d} \geq \frac{\|R A W x\|_{1}}{d \log d}=\frac{\|x\|_{2}}{d \log d} \geq \frac{\|x\|_{1}}{d^{3 / 2} \log d}
$$

A dense R that works is when all the entries are i.i.d. Cauchy random variables, scaled by $\frac{1}{d \log d}$.

[^0]: ${ }^{1}\|y\|_{1}$ can be written as the dot product of y and a vector where all entries are ± 1. Cauchy-Schwartz then tells us this is at most $\sqrt{n}\|y\|_{2}$.

[^1]: ${ }^{2}$ Note that G is invertible since the ellipsoid must be full dimensional as Q is full rank, which makes the unit ball of the norm we defined full dimensional.

