Fall 2017

Lecture $6-1 - \frac{10}{12} / 2017$

Prof. David Woodruff

Scribe: Sidhanth Mohanty

1 ℓ_1 -regression preliminaries

Given a $n \times d$ matrix A, and a vector b, the goal of ℓ_1 -regression is to find x^* minimizing the value of $||Ax - b||_1$. We note that in this problem, the cost is less sensitive to outliers than least squares regression, and depending on the application, this might be a desirable property making ℓ_1 -regression more suitable than least squares.

We note that if our goal is simply to solve this problem in polynomial time, then we can do so by writing a linear program. We introduce two new vectors of variables α^+ and α^- and solve the following LP.

Minimize	$ec{1} \cdot (oldsymbol{lpha}^+ + oldsymbol{lpha}^-)$
Subject to	$Ax + \alpha^+ + \alpha^- = b$
	$oldsymbol{lpha}^+,oldsymbol{lpha}^-\geq 0$

Note that this LP takes poly(n, d) time to solve.

However, as always, we are curious about whether we can solve this problem better or not. And a natural tool to turn to is sketching. And the answer is, yes, we can indeed solve this problem faster in approximation via sketching. As a first step we explore the geometry of ℓ_1 space a bit more.

2 Geometry of ℓ_1 space

2.1 Löwner-John Theorem and Well Conditioned Bases

All our fast algorithms ℓ_2 regression hinge on the following fact. For an $n \times d$ matrix A, we can always choose a $n \times d$ matrix U with orthonormal columns where A can be written as UW and $||Ux||_2 = ||Ax||_2$ for all $x \in \mathbb{R}^d$.

And thus naturally, we ask if can we find a U for which A = UW and $||Ux||_1 = ||x||_1$. Unfortunately, this isn't possible. What is true, though, is that there is U with orthogonal columns and A = UW where the following inequality holds:

$$||x||_2 \le ||Ux||_1 \le \sqrt{n} ||x||_2$$

and this is easy to prove via the Cauchy-Schwartz inequality.¹

 $^{\|}y\|_1$ can be written as the dot product of y and a vector where all entries are ± 1 . Cauchy-Schwartz then tells us this is at most $\sqrt{n}\|y\|_2$.

This massive amount of distortion is unsuitable for our purposes, and we do some work to strengthen this inequality to

$$\frac{\|x\|_1}{\sqrt{d}} \le \|Ux\|_1 \le \sqrt{d} \|x\|_1$$

which ends up being good enough for our purposes.

Let's write A as QW where Q has full column rank, and define $||z||_{Q,1} = ||Qz||_1$: $||cdot||_{Q,1}$ ends up being a norm.

Let $C = \{z \in \mathbb{R}^d : ||z||_{Q,1} \le 1||$ be the unit ball of norm $||\cdot||_{Q,1}$. C is convex, which can be seen by taking $x, y \in C$ and $0 \le \alpha \le 1$ to get

$$\begin{aligned} \|\alpha x + (1-\alpha)y\|_{Q,1} &\leq \|\alpha x\|_{Q,1} + \|(1-\alpha)y\|_{Q,1} \\ &= \alpha \|x\|_{Q,1} + (1-\alpha)\|y\|_{Q,1} \\ &\leq 1 \end{aligned}$$

which means $\alpha x + (1 - \alpha)y$ is in C.

Another property of C is that it is symmetric around the origin, because for any $x \in C$, we have $\|-x\|_{Q,1} = \|x\|_{Q,1} \le 1$.

Working towards our inequality, we state the Löwner-John Theorem.

Theorem 1 (Löwner-John). For all convex bodies C, we can find ellipsoid E such that $E \subseteq C \subseteq \sqrt{dE}$ where $E = \{z \in \mathbb{R}^d : z^T G^T G z \leq 1\}.$

We take the unit ball under the $\|\cdot\|_{Q,1}$ norm, and use the Löwner-John theorem to find an ellipsoid such that

$$\sqrt{z^T G^T G z} \le \|z\|_{Q,1} \le \sqrt{d} z^T G^T G z$$

Next, we define U as QG^{-1} , where U satisfies what is called the 'well-conditioned basis' property.² Take some x and define $z = G^{-1}x$. Then we get

$$||Ux||_1 = ||QG^{-1}x||_1 = ||Qz||_1 = ||z||_{Q,1}$$

Now, note that

$$z^{T}G^{T}Gz = x^{T}(G^{-1})^{T}G^{T}G(G^{-1})x = x^{T}x = ||x||_{2}^{2}$$

This gives us $||x||_2 \le ||Ux||_1 \le \sqrt{d} ||x||_2$, which from norm inequalities gives

$$\frac{\|x\|_1}{\sqrt{d}} \le \|Ux\|_1 \le \sqrt{d} \|x\|_1$$

2.2 Net for ℓ_1 -ball

Consider the unit ℓ_1 ball B. We call $N \subseteq B$ a γ -net if for all $x \in B$, there is $y \in N$ such that $||x - y||_1 \leq \gamma$. A suitable N can be constructed greedily by picking any $y \in B$ where y is more than

²Note that G is invertible since the ellipsoid must be full dimensional as Q is full rank, which makes the unit ball of the norm we defined full dimensional.

 γ away from all members of N, and adding it to N while there such a point y. We note that the ℓ_1 ball of radius $\frac{\gamma}{2}$ around every point is contained in the ℓ_1 ball of radius $1 + \frac{\gamma}{2}$ around **0**. We note that by our construction every pair of points in N are distance at least γ apart, which means that all the balls we drew around each point are disjoint.

Since the ratio of the volumes of d-dimensional ℓ_1 balls of radius $1 + \frac{\gamma}{2}$ and $\frac{\gamma}{2}$ is upper bounded by

$$\frac{\left(1+\frac{\gamma}{2}\right)^d}{\left(\frac{\gamma}{2}\right)^d}$$

so the above quantity also serves as an upper bound to the size of N.

2.3 Net for ℓ_1 subspace

Let A = UW for a well-conditioned basis U where vectors are scaled so that for all x

$$||x||_1 \le ||Ux||_1 \le d||x||_1$$

Now, let N be a $\left(\frac{\gamma}{d}\right)$ -net for the unit ℓ_1 -ball B and let $M = \{Ux | x \in N\}$ so $|M| \le \frac{\left(1 + \frac{\gamma}{2d}\right)^d}{\left(\frac{\gamma}{2d}\right)^d}$. We claim that for every $x \in B$, there is $y \in M$ for which $||Ux - y|| \le \gamma$. To see why this is true, pick $x' \in N$ for which $||x' - x||_2 \le \frac{\gamma}{d}$, and by the well-conditioned basis property of U, we know $||U(x' - x)||_1 \le \gamma$ which means that $||Ux - y||_1 \le \gamma$.

3 Towards an Algorithm

We start out with a very high level algorithm overview and delve into details afterwards.

• Compute poly(d)-approximate solution to the problem: that is, we find x' such that

$$||Ax' - b||_1 \le \mathsf{poly}(d) \min_{x \in \mathbb{R}^d} ||Ax - b||_1$$

• Compute a well-conditioned basis, that is write A as UW with the condition that for all $x \in \mathbb{R}^d$ we have

$$\frac{\|x\|_1}{\operatorname{\mathsf{poly}}(d)} \le \|Ux\|_1 \le \operatorname{\mathsf{poly}}(d) \|x\|_1$$

- Compute b' = b Ax'.
- Consider the optimization problem $\min_x ||Ux b'||_1$ and sample $\operatorname{poly}\left(\frac{d}{\varepsilon}\right)$ rows of this problem with probabilities proportional to the ℓ_1 norm of U|b' (b' is appended as a column to U).
- Now run the generic LP on the subsampled rows: this runs efficiently.

As motivation for considering the optimization problem $||Ux - b||_1$, we show that

$$\min_{x \in \mathbb{R}^d} \|Ax - b\|_1 = \min_{x \in \mathbb{R}^d} \|Ux - b'\|_1$$

whose proof is via the following chain of equalities.

$$\min_{x \in \mathbb{R}^d} \|Ax - b'\| = \min_{x + x' \in \mathbb{R}^d} \|A(x + x') - b\|_1$$
$$= \min_{x \in \mathbb{R}^d} \|Ax + Ax' - b\|_1$$
$$= \min_{x \in \mathbb{R}^d} \|Ax - b'\|_1$$
$$= \min_{W^{-1}x \in \mathbb{R}^d} \|AW^{-1}x - b'\|_1$$
$$= \min_{x \in \mathbb{R}^d} \|Ux - b'\|_1$$

Once the first two steps and the sampling step are made more efficient, we are happy since the rest can be done in $nnz(A) + poly\left(\frac{d}{\varepsilon}\right)$ time.

3.1 Finding an approximate solution fast

Now, towards the goal of finding an approximate solution quickly we consider the following theorem.

Theorem 2 (Sketching Theorem). There is a probability space over $d \log d \times n$ matrices R such that for any $n \times d$ matrix A, with probability at least $\frac{99}{100}$, we have for all x:

$$||Ax||_1 \le ||RAx||_1 \le d \log d ||Ax||_1$$

We note that this embedding simultaneously enjoys linearity and preserving the lengths of an infinite number of vectors and is also independent of A.

We defer the proof to a later section, in the next set of notes.

The computation of a $d \log d$ approximation can be done in two simple steps:

- Compute *RA* and *Rb*.
- Solve $\arg\min_{x\in\mathbb{R}^d} \|RAx Rb\|_1$.

The sketching theorem applied to $A \circ b$ implies that x' is a $d \log d$ approximation. Since RA and Rb have $d \log d$ rows, so we can solve the ℓ_1 regression problem efficiently.

3.2 Computing a well-conditioned basis

The following algorithm accomplishes it.

- Let R be a ℓ_1 -sketching matrix. Compute RA.
- Compute W so that RAW is orthonormal.

• U = AW is well-conditioned because

$$\|AWx\|_{1} \le \|RAWx\|_{1} \le \sqrt{d\log d} \|RAW\|_{2} = \sqrt{d\log d} \|x\|_{2} \le \sqrt{d\log d} \|x\|_{1}$$

and

$$\|AWx\|_1 \ge \frac{\|RAWx\|_1}{d\log d} \ge \frac{\|RAWx\|_1}{d\log d} = \frac{\|x\|_2}{d\log d} \ge \frac{\|x\|_1}{d^{3/2}\log d}$$

A dense R that works is when all the entries are i.i.d. Cauchy random variables, scaled by $\frac{1}{d \log d}$.