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2 Overview

The motivation for studying algorithms for big data stems from the massive data sets that are
available today and the requirement to process them efficiently. Data sets such as internet traffic
logs, financial data etc. are large enough to warrant near linear time processing and often cannot
be entirely stored in memory. Algorithms achieving such constraints usually do so at the cost of
a randomized approximation. We consider the regression problem which is ubiquitous in machine
learning, statistics and data mining. Regression is a statistical method to study dependencies
between the variables in the presence of noise. More specifically, we look at linear regression, where
the dependencies are linear.

3 Linear Regression

In the standard setting for linear regression, there is a measured variable b and a set of predictor
variables a1, a2 . . . ad. The working assumption is that b = x0 + a1x1 + a2x2 + . . . adxd + ε, where
ε is the noise and the xis are the coefficients of a hyperplane (model parameters) that we wish to
learn. We can assume x0 = 0 by adding a0 to our model and always setting it to 1. Thus, w.l.o.g.
we work with b = a1x1 + a2x2 + . . . adxd + ε. The noise ε may be adversarial or may come from a
distribution we have no information about.

Consider an experiment in which we receive n observations of the form (ai,1, ai,2 . . . ai,d, bi), for all
i ∈ [1, n]. It is convenient to think about the observations in matrix form where we are given a
n × d matrix A, where each row i has d predictor variables corresponding to the ith observation.
Additionally, there is a column vector b, where the ith entry is bi. The goal of the regression problem
is to output a vector x such that Ax is close to b under an appropriate notion of closeness. We also
assume that the number of observations, n, is much larger than the number of predictor variables,
d.
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3.1 Least Squares Method

One of the most common notions of closeness between Ax and b is the least squares method, which
minimizes the Euclidean distance between them. Formally,

argminx||Ax− b||2 = argminx

n∑
i

(bi − 〈Ai,∗x〉)2

where Ai,∗ is the ith row of matrix A and bi is the ith entry of vector b. As an aside, if ε is
independently sampled gaussian noise, then x is the Maximum Likelihood Estimator for the data.

The least squares method also has an aesthetic geometric interpretation. The matrix vector product
Ax can be rewritten as A∗,1x1 + A∗,2x2 + . . .A∗,dxd, where A∗,i is the ith column of A. Note, this
is a linear d-dimensional subspace. The least squares problem is then equivalent to finding a point
in the column space of A that is nearest to b in Euclidean distance.

In order to find the solution to argminx||Ax−b||2, we can instead consider the equivalent problem,
argminx||Ax − b||22. Let b = Ax′ + b′, where b′ is orthogonal to the column space of A. By
Pythagorean theorem, the cost is then argminx||A(x − x′)||22 − ||b′||22. Observe, x is an optimal
solution if and only if AT (Ax− b) = ATAx−ATAx′ −ATb′ = ATAx−ATAx′ = 0. The first
equality follows from b = Ax′ + b′, the second follows from AT being orthogonal to b and the last
follows from ||A(x − x′)||22 ≥ 0 and thus the cost is minimized when it is set to 0. The equation
ATAx = ATb is known as the normal equation and any optimal x satisfies it. Note, if the columns
of A are linearly independent, then A has full rank and x = (ATA)−1ATb. If the columns of A
are not linearly independent, the Moore-Penrose pseudoinverse gives an optimal minimum norm
solution.

3.1.1 Moore-Penrose Pseudoinverse

Let A = UΣVT be the Singular Value Decomposition (SVD) of A, where U is a n×d matrix with
orthonormal columns, Σ is a d× d diagonal matrix with non-zero non-increasing entries down the
diagonal, and VT is a d×d matrix with orthonormal rows. Then, the Moore-Penrose pseudoinverse,
A†, is the d × n matrix VΣ†UT , where Σ† is a d × d diagonal matrix with Σ†i,i = 1

Σi,i
if Σi,i > 0

and 0 otherwise.

Claim 1. The solution x = A†b is optimal and has minimum norm.

Proof. Substituting x = A†,b in the normal equation, it is sufficient to show that ATA(A†b) =
ATb. By definition, A = UΣVT and AT = VΣUT . Then, ATA(A†b) = VΣUTUΣVTVΣ†UTb.
Note UTU = I and VTV = I since they have orthonormal rows and columns respectively. Further,
ΣΣ† = I. Therefore, we get VΣUTb = ATb, proving x is an optimal solution.

Observe, we can generate an affine space of solutions by adding a vector orthogonal to the column
space of A. Therefore, any optimal solution has the form A†b+(I−V′V′T )z, where V′T corresponds
to the rows i of VT for which Σi,i > 0. Since A(I − V′V′T )z = 0, this is an optimal solution.
Additionally, A†b + (I−V′V′T )z is a (d− rank(A)-dimensional affine space that spans all optimal
solutions. Since A†b is in the column spam of V′, using the Pythagorean theorem, ||A†b + (I −
V′V′T )z||22 = ||A†b||22 + ||(I−V′V′T )z||22 ≥ ||A†b||22. Therefore, x = A†b is the solution with the
minimum norm.
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The main problem with the above solution is that on sufficiently large data sets, such as those
in practice, matrix multiplication and singular value decomposition are prohibitively expensive.
Naively computing the SVD requires min(nd2, dn2) time. Using fast matrix multiplication we can
bring it down to nd1.376. However, we are interested in algorithms that run much faster.

3.1.2 The Sketch and Solve Paradigm

In this section, we explore sketching techniques to improve upon the above time complexities, at
the cost of settling for a randomized approximation algorithm. Let us consider the relaxed version
of the problem:

argmin′x||Ax′ − b||2 = (1 + ε)argminx||Ax− b||2
where x is the optimal hyperplane. The sketch and solve paradigm uses the following high-level
algorithm:

• Draw S from a k × n random family of matrices, where k << n.

• Computer S*A and S*b

• Output solution x′ to minx′ ||(SA)x− Sb||22

Many families of random matrices work. Let S be a d/ε2 × n matrix of i.i.d. Normal random
variables with mean 0 and variance 1/k, where k = O(d/ε2). For any fixed d-dimensional subspace,
i.e. the column space of A, w.h.p for all x ∈ Rd, ||SAx||2 = (1± ε)||Ax||2. To see why this is true,
we segue into subspace embeddings.

3.1.3 Subspace Embeddings

In this section, we want to prove that w.h.p for all x ∈ Rd, ||SAx||2 = (1±ε)||Ax||2. Since we want
to prove this for all x, we can assume that the columns of A are orthonormal. The first property
we need is the two stability of normal random variables.

Claim 2. Let X and Y be two random variables such that X is drawn from N (0, a2) and Y is drawn
from N (0, b2). Then, X+Y is drawn from N (0, a2 + b2).

Proof. Observe that the probability density function of fz of Z = X + Y is a convolution of
probability density functions fx and fy. By definition, fz(z) =

∫
fx(z − y)fy(y)dy, where fx(x) =

1√
2πa

e−x
2/2a2 and fy(y) = 1√

2πb
e−y

2/2b2 . Then,

fz(z) =

∫
1√
2πa

e−(z−y)
2/2a2 1√

2πb
e−y

2/2b2dy

=
1√

2π(a2 + b2)
e−z

2/2(a2+b2)

∫ √
(a2 + b2)√

2πab
e
−

(y− b2z
a2+b2

)2

2( a2b2

a2+b2
)
dy

Observe that the integral evaluates to 1 since it is a Guassian distribution and Z ∼ N (0, a2+b2).
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The second property that we require is the rotational invariance of Gaussian random variables.
This is shown in the second part of the lecture.
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