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Outline

* Linear algebra — geometric interpretation
* Probability — inequalities and bounds
* Some interesting stuff



Linear Algebra

Vectors, vector spaces, matrices, SVD



Vectors

* X = (Xq, X, ..., X4) € R (each x;is a component)
* A pointind-dimensional space

* Norm or magnitude [|x|| = (xX™)¥/2 = (x;2 + X,2 + ... + x42)*
* Length of the vector (Pythagorean theorem)

e Zero vector (horm zero), unit vector (norm one)

* Inner product<x, y> = X1y1 + ... X4Yq4
* Resultis a scalar
 lIxll = (<x, x>)2
e <X, y>=0impliesx Ly



Vector spaces

e Space where vectors live

* Formally, a collection of vectors which is closed under linear
combination

 If {x, y} are in the space, so is ax+by for any scalars a, b € R
* Should always contain zero vector

* Examples: {0}, RY, the line x = 3y in R2



Span and basis

* A set of vectorsis said to span a vector space if one can write any
vector in the vector space as a linear combination of the set

* {X{, X5, ..., X} span the space {3>ax; | a.eR}
 This set is called the basis set

* Examples
* The vectors {(0,1), (1,0)} span R?
* {(1, 1)} spans x=y which is a subspace of R?
* The vector {(0,1), (0,1), (1,1)} also span R?



Linear independence and orthonormality

* Linear independence — a notion to remove redundancy in the basis

* {X, X,, ..., X} are linearly independentiff the only solutionto Yax.=0isa; = a,
=. =a,=0.
* Cannot express any vector x; as a linear combination of the others

* Dimensionality of a vector space is the maximum number of linearly
independent basis vectors

* Orthonormal basis
* {xy, x,, ..., X} is orthonormal basis if < x;, x;>= 1 if i=j and 0 otherwise
* Coordinate axes for the vector space

* Example: The basis {(0, 1), (1,1)} for R? is linear independent but not
orthonormal.



Matrices

* Operator which transforms vectors from one vector space to another
* y=Ax
* The operatoris linear, that is
A (ax + by) = a(Ax) + b (Ay)

* The result of applying the operatoris a linear combination of the column vectors
* Thus, Ax =b has an exact solutioniffbisinthe column space of A

* Eigen vectors of A are the special vectors are the special vectors x which satisfy

Ax = Ax for some A
 Aiscalledthe eigen valueand xis the eigen vector

 How do we visualize the transformation geometrically?



Visualizing the matrix operator — special cases

* |dentity matrix
e Square matrix with diagonal elements 1 and non-diagonal elements O
* The transformed vector Ax is same x

* Diagonal matrix
* Square matrix with non-diagonal elements O
* ith componentin Ax is a scaled version of x; (scaling = A..)

* Orthonormal (or rotation) matrix

* Matrix whose columns{a,, a,, ..., a,} are such that< a;, a;>= 1 ifi=jand O
otherwise. That is, A'A = |

* Rotates the vector
* Preserves norms ||Ax|| = ||x|| (why?)



General case — Singular Value Decomposition

 We have a rectangular matrix A e Rmxn

* It can be decomposed as
A =UDVT

* U and V are orthonormal, i.e., UTU = V'V = | and D is a diagonal matrix
containing singular values
* Number of non-zero diagonal elementsin D = rank of A

* Provides a nice way to understand the operator A
e Rotationin n-dimensional space, scaling, rotation in m-dimensional space

* Can be computed in O(min{mn?2, m?n}) time (or better using fast
matrix multiplication)



Computation of SVD

* Let m>n, i.e., Ais a skinny matrix. How to compute SVD of A in O(mn?)
time?

 Step 1: Compute ATA in O(mn?) time.

* Step 2: Get eigenvalue decomposition of ATA in O(n3) or better. Why
do this?

* If the SVD of Ais UDV', then ATA = VDUTUDVT

* That is, the eigenvalues of AAT are the square of the singular values of A and
the eigenvectors are the right singular space

e Step 3: U =AVD1in O(mn?) time.



Example problem 1

e If singular values of A e R™" all lie in [a, b], prove that
allx[|< |Ax]| < bf|x|

Solution:

* Let A=UDVT

* [|Ax]| = [JUDV x|

* Lety = V'x. (note: |ly|| = [|x]))

* We can do this because we prove this for every x
* [|Ax][ = [[UDy]|| = [[Dyll
* As singular values lie in [a, b], a|ly||< ||IDy|| < b]ly]|



Example problem 2

* Prove that Frobenius norm of a matrix (||All; = (3; ¥;A;2)Y?) is always greater than
or equal to the operator norm (J|A|l, = sup, [|Ax||/[|x]]). Solution:

Solution:

* Let x = 2;c;e, for coefficientscy, .. ¢4

* Let [Ix[l,= 1. Then, % |¢;[ =1

* [|Ax]|,> = 2;C;Ae 1,2

* By triangle inequality, this is < ( Z; [¢;| [|Ae]l;)?

* Whichis < (Z; [¢;|?) ( [|Ae]l,?) by Cauchy-Schwarz inequality
* Which is ”Aejuz2 = [|A]l



Probability

Useful inequalities



Expectation and variance

* Let X be a random variable

* Expectation E[X] = }; P(X=j).j (discrete)
 Variance Var[X] = E[(X-E[X])?] = E[X?] — E[X]?
* In general, k' order moment is E[ | X-E[X]|¥]



Markov inequality

* For a non-negative random variable X and non-negative t,
Pr[X > t] < E[X]/t

Proof:

 We'll show for continuous r.v, but proofis similar for discrete r.v
* E[X] = [o=x p(x) dx = [o'x p(x) dx + [~ x p(x) dx

* E[X] < [~ x p(x) dx

e <t. [=p(x) dx=1t.Pr[X2t]




Chebyshev inequality

* Let u = E[X] and o2 = Var[X]. Then,
Pr{|X-u| = t] £ 0?/t2

Proof:
* Pr|X-p| 2 t] = Pr[|X-p|>2 t?]
* By Markov inequality, Pr[|X-p|2 > t2] < E[ | X-p|?])/ t? = 0%/t?



Chernoff bound

* Forindependent random variables Xy, X,, .. X, with X = 3. X,
Pr(X > a] < miny, e®TT; E[e™]
Pr(X < a] £ min,, e® ], E[e’™]
Proof:
* Key idea: Apply Markov inequality on etX
* Pr[X=2a] =Pr[e¥% > e®] < et E[e™]
* By independence, this is e T. E[e™X/]
* This is true for every positive t, so take infimum to get the best bound



Chernoff bound (i.i.d Bernoulli)

* Forindependent Bernoulli random variables X, X,, .. X, each having
probability p of being equal to 1, if X is the sum }; X,

Pr(X > (14+4)u) < ( e )

(1 + §)1+9)
A more useful but loose bound is:
52,u

Pr(X>(14+d)u)<e 3, 0<d6<1



Interesting stuff



Hadamard matrix—vector product in O(nlogn)

* Let H, be the Hadamard matrix with 2k rows and columns
* Observe that H, = P Hk'1]
Het o -Hia
* Let x be (x,, x;) —the upper and lower parts contain n/2 entries each
He_1 X, + Hi4 Xl]

Hi-1 X, - Hieq X

* Once H,_; x,and H,_; x, have been computed in T(n/2) time, we
perform O(n) element wise addition/subtraction to solve the original
problem

* Then, H x = [

* Thus, T(n) = 2T(n/2) + O(n) which gives O(n log n) time complexity



