
15-859 Algorithms for Big Data — Fall 2017

Problem Set 3 Solutions

Problem 1: Entrywise-`1 Low Rank Approximation

(1) Let T = r · S. By the 1-stability of the Cauchy distribution, each entry of the r × n
matrix TA is a Cauchy random variable, where the entries in the j-th column are
independent and scaled by ‖Aj‖1, where Aj is the j-th column of A. Let Ei,j be the
event that (TA)i,j ≤ n3‖Aj‖1, and let E = ∩i,jEi,j. Then Pr[Ei,j] ≥ 1 − O(1/n3), and
using that r ≤ n, by a union bound Pr[E ] ≥ 1−O(1/n). Repeating the argument shown
in class, E[|(TA)i,j| | Ei,j] = Θ(log n)‖Aj‖1. Also, repeating the argument shown in
class, E[|(TA)i,j| | E ] = Θ(log n)‖Aj‖1. Consequently, E[‖TA‖1 | E ] = Θ(r log n)‖A‖1,
and so by a Markov bound, with probability at least 9/10, ‖TA‖1 = O(r log n)‖A‖1.
It follows that with probability at least 9/10, ‖SA‖1 = O(log n)‖A‖1.

(2) The original version of the problem set asked you to just show an O(k log k + log n)
bound, and you will receive full credit if you show this bound. For this part of the
problem it is possible to achieve an O(log n) approximation, so we’ll show the tighter
approximation factor.

If V ′ is the minimizer to minV ′ ‖SUV ′ − SA‖1, then ‖UV ′ − A‖1 ≤ ‖UV ′ − UV ∗‖1 +
‖UV ∗−A‖1 by the triangle inequality. Also, ‖UV ′−UV ∗‖1 ≤ ‖S(UV ′−UV ∗)‖1 by the
property of S, and ‖S(UV ′−UV ∗)‖1 ≤ ‖SUV ′−SA‖1 + ‖SUV ∗−SA‖1 again by the
triangle inequality. Then, ‖SUV ′−SA‖1 ≤ ‖SUV ∗−SA‖1 since V ′ is the minimizer to
minV ′ ‖SUV ′−SA‖1, and so ‖S(UV ′−UV ∗)‖1 ≤ 2‖SUV ∗−SA‖1 = O(log d)‖UV ∗−
A‖1 by the previous part. Putting this all together, ‖UV ′−A‖1 = O(log d)‖UV ∗−A‖1.

(3) Let V ′′ be the minimizer to minV ‖S(UV − A)‖1,2, as suggested by the hint. Notice
that we can solve for the columns of V ′′ independently. Also notice that for any
individual column V ′′i , we have V ′′i = (SU)−(SAi) by the normal equations applied to
that column, since this is just a least squares problem. Consequently, V ′′ = (SU)−SA,
and is thus in the row span of SA. Since S has only s rows, for any vector Vi,

1√
s
‖S(UVi − Ai)‖1 ≤ ‖S(UVi − Ai)‖2 ≤ ‖S(UVi − Ai)‖1.

It follows that ‖S(UV ′′i −Ai)‖1 ≤
√
s‖S(UV ′′i −Ai)‖2 ≤

√
s‖S(UV ′i−A)‖2 ≤

√
s‖S(UV ′i−

A)‖1, where the first inequality is as above, the second inequality uses that V ′′ is the
minimizer with respect to the ‖ · ‖1,2 norm, and the third inequality uses that the
2-norm is at most the 1-norm. Here V ′ is the minimizer to minV ‖S(UV −A)‖1, as in
the previous part. Consequently, ‖S(UV ′′ − A)‖1 ≤

√
sminV ‖S(UV − A)‖1.

(4) Notice that we have for any Y,X that

‖TLARYXSATR − TLATR‖1
k · poly(log k)

≤ ‖TLARYXSATR − TLATR‖F

≤ ‖TLARYXSATR − TLATR‖1,



which follows by thinking of TLARYXSATR − TLATR as a length-k2poly(log k) di-
mensional vector and using the relationship between the 1-norm and 2-norm for such
vectors. Consequently, by minimizing with respect to the Frobenius norm, we have
that β ≤ k · poly(log k). Hence, using that TL and TR are affine embeddings for `1,
overall our approximation ratio is poly(k log n).

Problem 2: Estimating Quantities in a Stream

(1) Let S be a CountSketch matrix with O(1/ε2) rows. As discussed in class, S can be
represented using O(log n) bits by storing its hash function h, which can be 2-wise
independent, and sign function σ, which can be 4-wise independent. Problem 3 on
the first homework showed that for any fixed vector x (in fact for any matrix), we
have ‖Sx‖22 = (1 ± ε)‖x‖22 with probability at least 9/10. We can maintain Sx in
the streaming model using O((log n)/ε2) bits of space. We can also maintain µ in the
streaming model with O(log n) bits of space, since this just amounts to maintaining
the single inner product of x with the vector (1/n, 1/n, . . . , 1/n). At the end of the
stream, we compute S · (µ · 1n), where (µ · 1n) is the vector with µ in every coordinate.
We can then compute Sx− S · (µ1n), and we have by the above that

1

n
‖Sx− S · (µ1n)‖22 = (1± ε) 1

n
‖x− (µ1n)‖22 = (1± ε) 1

n

∑
i

(xi − µ)2 = (1± ε)v,

which holds with probability at least 9/10.

(2) Note that (x2i −8xi + 16) = (xi−4)2. Hence, as in the previous part, we can output an
f̃ for which f(x)/2 ≤ f̃ ≤ 3f(x)/2 for the function f(x) =

∑n
i=1(x

2
i − 8xi + 16) using

O(log n) bits of space by maintaining S ·x for a CountSketch matrix S with O(1) rows,
then computing S ·(4 ·1n) at the end of the stream, and outputting ‖Sx−S ·(4 ·1n)‖22 =
(1± 1/2)‖x− (4 · 1n)‖22 = (1± 1/2)

∑
i(xi − 4)2, which holds with probability at least

9/10 > 2/3.

For the other function f(x) =
∑n

i=1(x
2
i−10xi+16), we have f(x) =

∑n
i=1(xi−8)(xi−2),

and we claim that any randomized algorithm which succeeds with probability at least
2/3 in outputting an f̃ with f(x)/2 ≤ f̃ ≤ 3f(x)/2 requires Ω(n) bits of space. Suppose
we are presented a stream which is an instance of problem P . For each stream update
of the form xi ← xi + ∆j, we replace it with xi ← xi + 6∆j. Finally, at the end of
the stream, we include the updates xi ← xi + 2 for i = 1, 2, . . . , n. Then if the original
instance x to problem P had the property that all xi ∈ {0, 1} at the end of the stream,
the vector x produced by this transformed stream has the property that all xi ∈ {2, 8}
at the end of the stream. Note that in this case, we have f(x) =

∑n
i=1(xi−8)(xi−2) = 0.

On the other hand, if the original x to problem P had a coordinate xi /∈ {0, 1}, then
6xi + 2 /∈ {2, 8}, and so f(x) 6= 0. Any number f̃ for which f(x)/2 ≤ f̃ ≤ 3f(x)/2 can
distinguish these two cases, and thus, if we feed the updates in this transformed stream
to an algorithm for outputting such an f̃ with probability at least 2/3, we can solve

2



problem P with probability at least 2/3. Hence, any such algorithm requires Ω(n) bits
of space.

3


