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Problem 1: Entrywise-`1 Low Rank Approximation (25 points) In class we studied
Frobenius norm low rank approximation minrank- kA′ ‖A − A′‖2F and on the second problem
set we studied spectral norm low rank approximation minrank- kA′ ‖A−A′|22. In this problem
we are going to study entrywise-`1 low rank approximation minrank- kA′ ‖A−A′‖1, where for
an n × n matrix B, ‖B‖1 =

∑
i,j∈[n] |Bi,j|. As for regression, this error measure is often

considered more robust than the other error measures we considered. Unfortunately, this
problem is NP-hard. Nevertheless, we will be able to design approximation algorithms for
this problem based on the Cauchy sketches we discussed in class.

(1) (5 points) Suppose S is an r × n matrix of i.i.d. Cauchy random variables, scaled by
1/r, and A is an n×n fixed matrix. Here r is any number satisfying 1 ≤ r ≤ n. Argue
that with probability at least 9/10, ‖SA‖1 = O(log n)‖A‖1.
As a hint, think of the truncation we did in class for Cauchy random variables in order
to make them have a finite expectation.

(2) (5 points) We saw in class that for any fixed n × k matrix U , if S is an s × n matrix
of i.i.d. Cauchy random variables with s = O(k log k), then with probability at least
9/10, simultaneously for all x ∈ Rd,

‖Ux‖1 ≤ ‖SUx‖1 = O(k log k)‖Ux‖1. (1)

Combined with the previous part, show that with probability at least 4/5, if V ′ ∈ Rk×n

is the minimizer to minV ‖S(UV−A)‖1, then V ′ satisfies ‖UV ′−A‖1 = O(log n) minV ‖UV−
A‖1.
As a hint, think of applying part (1) together with (1) and the triangle inequality. You
may use the fact that there exists an optimal solution, and let U∗V ∗ be the best rank-k
approximation to A, that is, the minimizer to minU,V ‖U∗V ∗ − A‖1. Try to think of a
way of getting this optimal solution involved in the triangle inequality.

Note that the original version of the problem set asked you to show ‖UV ′ − A‖1 =
O(k log k+log n) minV ‖UV −A‖1. If you show this weaker bound, you will still receive
full credit.



(3) (10 points) Show how, given the problem minV ‖S(UV − A)‖1, we can find a matrix
V ′′ ∈ Rk×n for which ‖S(UV ′′−A)‖1 ≤

√
sminV ‖S(UV −A)‖1, where s is the number

of rows of S, and importantly, V ′′ is in the row span of SA.

As a hint to this problem, consider replacing the problem minV ‖S(UV − A)‖1 with
minV ‖S(UV − A)‖1,2, where for a matrix B, ‖B‖1,2 =

∑
i=1,...,n ‖Bi‖2 is the sum of

the column Euclidean norms of B. Next, observe that you can solve for the columns
of V independently and one at a time given U . What is the form of the solution Vi for
a given problem minVi

‖S(UVi − Ai)‖2?

(4) (5 points) As for the Frobenius low rank approximation problem, let A′ = U∗V ∗

be the minimizer to minrank- kA′ ‖A − A′‖1, and consider the hypothetical regression
problem minV ‖U∗V − A‖1. By the previous part we know that if S is an s × n
matrix of i.i.d. Cauchy random variables, then combining the previous two parts,
there is a matrix U∗V ′′ for which V ′′ is in the row span of SA and ‖U∗V ′′ − A‖1 =
O(
√
s log n) minV ‖U∗V − A‖1. Thus, we can write V ′′ = XSA for an unknown k × s

matrix X, and if we were to solve the problem minX ‖U∗XSA − A‖1, the minimizer
U∗XSA would be an O(

√
s log n)-approximate entrywise-`1 low rank approximation.

Of course, we do not know U∗.

It turns out, analogously to problem 2.3 on homework 2, we can sketch the problem
minX ‖U∗XSA − A‖1 on the right by another matrix R of i.i.d. Cauchy random
variables with r = kpoly(log k) columns in order to conclude that there is a rank-
k matrix of the form ARYXSA, where Y is r × k, for which ‖ARYXSA − A‖1 ≤
poly(k log n) minrank- kA′ ‖A − A′‖1. You do not need to prove this and can just take
it as given, since the proof is very similar to the previous parts and problem 2.3 on
homework 2.

Suppose now we are given the problem minY,X ‖ARYXSA− A‖1. It turns out, anal-
ogously to problem 2.4 on homework 2, one can sketch on the left and right by
Cauchy matrices TL and TR, respectively, where TL has kpoly(log k) rows and TR has
kpoly(log k) columns so that if Y ′, X ′ are the minimizers to minY,X ‖TLARYXSATR−
TLATR‖1, then

‖ARY ′X ′SA− A‖1 ≤ poly(k log n) min
rank- kA′

‖A− A′‖1.

Note that TL and TR are the analogue of affine embeddings for the `1-norm, meaning
that ‖TLARYXSATR−TLATR‖1 is within a poly(k log n) factor of ‖ARYXSA−A‖1
for all Y and X. You do not need to prove this and can just take it as given, since the
proof is very similar to the previous parts and problem 2.4 on homework 2.

Finally, note that minY,X ‖TLARYXSATR − TLATR‖1 is a very small problem that
does not depend on n, namely, the dimensions of all matrices TLAR, SATR, TLATR,
and the unknown matrices Y,X are kpoly(log k). Note that Y X is a rank-k ma-
trix and we are trying to find the best rank-k matrix Y X to minimize this prob-
lem. Recall on the last problem set we saw a closed form expression for solving
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minY,X ‖TLARYXSATR − TLATR‖F , that is, this is polynomial time solvable if we
replace the entrywise ‖ · ‖1 norm with the ‖ · ‖F norm. Suppose then, that we just
let Y ′, X ′ be the minimizers to minY,X ‖TLARYXSATR − TLATR‖F . What is the
minimal approximation factor β for which you can ensure that ‖TLARY ′X ′SATR −
TLATR‖1 ≤ βminY,X ‖TLARYXSATR − TLATR‖1? Conclude that, overall, we have
‖ARY ′X ′SA− A‖1 ≤ β · poly(k log n) minrank- kA′ ‖A− A′‖1.

Problem 2: Estimating Quantities in a Stream (25 points) In class we saw the
turnstile streaming model where there is an underlying n-dimensional vector x which is
initialized to 0n. Then, x undergoes a long sequence of additive updates to its coordinates
of the form xi ← xi + ∆j for some ∆j ∈ {−B,−B + 1, . . . , B}, where j indexes the j-th
update in the stream, and where B is an integer at most poly(n). It is promised at all times
in the stream that x ∈ {−B,−B + 1, . . . , B}n.

(1) (10 points) The sample variance of a vector x is defined to be

v =
1

n

n∑
i=1

(xi − µ)2,

where µ =
∑

i
xi

n
is the sample mean. Show how to output a number v′, such that with

probability at least 9/10, it holds that (1 − ε)v′ ≤ v ≤ (1 + ε)v, where ε ∈ (0, 1) is a
given accuracy parameter. Your algorithm should use O(ε−2 log n) bits of space. You
can assume the algorithm knows the number n.

(2) (15 points) For exactly one of the functions (1) f(x) =
∑n

i=1(x
2
i − 10xi + 16) and (2)

f(x) =
∑n

i=1(x
2
i − 8xi + 16), it is possible, with probability at least 2/3, to output a

number f̃ given x in the above streaming model, for which f(x)/2 ≤ f̃ ≤ 3f(x)/2,
and for which the algorithm uses O(log n) bits of space. For the other function, any
algorithm requires Ω(n) bits of space to output such an f̃ with probability at least 2/3.
Show which function is which and prove why in both cases.

For your lower bound argument, you may use that any randomized algorithm which
with probabilty at least 2/3, decides if at the end of the stream, all coordinates xi in
are in {0, 1} or if there is some i for which xi is not in {0, 1}, requires Ω(n) bits of
space. Let us refer to this problem as problem P .

As a hint, think about being given an input stream to problem P , modifying the stream
in a certain way, and using the output f̃ of an algorithm for one of the functions above,
run on this modified stream, to solve problem P .
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