
15-859 Algorithms for Big Data — Fall 2017

Problem Set 2 Solutions

Problem 1: Composability of Sketching Matrices

(1) Let y = b−Ux∗, and z = HDy. In class we showed that for any fixed vector y, we have
that ‖HDy‖∞ = O(

√
log(nd)‖y‖2/

√
n) with probability at least 1−1/200, and so since

‖z‖2 = ‖y‖2, this implies ‖z‖∞ = O(
√

log(nd)‖z‖2/
√
n). We condition on this event

in what follows, and let D be any fixed diagonal matrix for which this event holds. Let
V = HDU . Since UTy = 0, we have V T z = 0. Also since U has orthonormal columns,
and since H and D are orthonormal, ‖V T‖2

F = ‖UT‖2
F , and so it suffices to show that

with probability 1− 1/100 over the choice of P , ‖V TP TPz‖2
2 = O(ε/d)‖V T‖2

F‖z‖2
2.

Let s = dε−1poly(log(nd)) be the number of rows of P , and let R be the multi-set
of s sampled indices in [n], chosen by P . The i-th coordinate of V TP TPz is equal
to (n/s)

∑
j∈R v

i
j · zj, where vi is the i-th row of V T . Since 〈vi, z〉 = 0, we have that

E[(V TP TPz)i] = 0. Thus, E[(V TP TPz)2
i ] = Var[(V TP TPz)i] and since coordinates

j 6= j′ ∈ R are independent, Var[(V TP TPz)i] = (n2/s2) · s ·Var[vij · zj], where j is a
uniformly random index. Note also that E[vij · zj] = 0 and so Var[vij · zj] = E[(vij · zj)2].

We thus have,

E[(vij · zj)2] =
n∑
k=1

(1/n) · (vik)2z2
k

≤ (1/n)‖vi‖2
2‖z‖2

∞

≤ (1/n)‖vi‖2
2O((log(nd))‖z‖2

2)/n

= (O(log(nd))/n2)‖vi‖2
2‖z‖2

2,

and so E[(V TP TPz)2
i ] ≤ (O(log(nd))/s)‖vi‖2

2‖z‖2
2. Consequently, E[‖V TP TPz‖2

2] =
O((log(nd))/s)‖V T‖2

F‖z‖2
2. It follows for appropriate s = O(dε−1 log(nd)), by a Markov

bound we have that with probability at least 1−1/200, ‖V TP TPz‖2
2 = O(ε/d)‖V T‖2

F‖z‖2
2.

(2) We showed in class that for a random CountSketch matrix T withO(d2) rows, it satisfies
the first property above with probability 99/100. Along the way to showing this, we
also showed that T satisfies the approximate matrix product property in class, where
recall that if T has O(d/ε) rows, then the approximate matrix product property we
showed is that with probability 99/100, ‖UTSTS(b−Ux∗)‖2

2 = O(ε/d)‖UT‖2
F‖Ux∗−b‖2

2.

(3) By the above, we just need to show that S · T satisfies properties (1) and (2). For
property (1), notice that if ‖TAx‖2 = (1 ± 1/10)‖Ax‖2 for all x and ‖STAx‖2 =
(1± 1/10)‖TAx‖2 for all x, then ‖STAx‖2 = (1± 1/10)2‖Ax‖2 = (1± 1/2)‖Ax‖2 for
all x, as desired.



For property (2), we have that since S satisfies the generalization of property (2) given
in the problem statement, that

‖UTT TSTST (b− Ux∗)− UTT TT (b− Ux∗)‖2 ≤
√
ε√
d
‖UTT T‖F‖T (b− Ux∗)‖2.

Consequently, by the triangle inequality,

‖UTT TSTST (b− Ux∗)‖2 ≤ ‖UTT TT (b− Ux∗)‖2 +

√
ε√
d
‖UTT T‖F‖T (b− Ux∗)‖2.

Since T is a subspace embedding for U , we have ‖UTT T‖F = ‖TU‖F ≤ (1+1/2)‖U‖F .
Also, since ‖Ty‖2 ≤ (1 + 1/2)‖y‖2 for a fixed vector y with probability 99/100, we
have ‖T (b − Ux∗)‖2 ≤ (1 + 1/2)‖b − Ux∗‖2. Finally, since T satisfies property (2),

‖UTT TT (b − Ux∗)‖2 ≤
√
ε√
d
‖UT‖F‖b − Ux∗‖2. Putting these statements together and

plugging into (1), we have that with probability at least 24/25, ‖UTT TSTST (b −
Ux∗)‖2

2 = O(
√
ε√
d
· ‖UT‖2

F‖b− Ux∗‖2
2, as desired.

Problem 2: Linear Dependence on ε for Low Rank Approximation

(1) We still need property (1), that S is a (1 ± 1/2)-subspace embedding for the col-
umn span of A. The second property slightly changes in that now we need that if
U is an orthonormal basis for the column span of A, then ‖UTSTS(B − UX∗)‖2

F =
O(ε/d)‖UT‖2

F‖UX∗−B‖2
F , where X∗ is the minimizer to minX ‖UX −B‖2

F . The rest
of the proof, as in the solutions for problem set 1, goes through.

(2) This is a similar argument to the one given in class. We consider the hypotheti-
cal regression problem minX ‖AkX − A‖2

F . By the previous part, letting U be an
n × k orthonormal basis for the column span of Ak, we have that if ST is a sub-
space embedding for the column span of Ak, and if it satisfies ‖UTSTS(A − Ak)‖2

F =
O(ε/d)‖UT‖2

F‖A− Ak‖2
F , then the minimizer X ′ to minX ‖STAkX − STA‖2

F satisfies
‖AkX ′ − A‖2

F ≤ (1 + ε)‖A − Ak‖2
F . Note that here, in the notation of the previous

part, ‖UX∗ − B‖2
F = ‖Ak − A‖2

F , since UX∗ is of rank k, and the optimal rank-k
approximation to A is Ak. Importantly though, the minimizer X ′ can be written as
(STAk)

−STA, and so is a (1 + ε)-approximate rank-k approximation to A in the row
span of S · T · A.

(3) By the previous part, we know that minrank−kX ‖XSTA−A‖2
F ≤ (1 + ε)‖A−Ak‖2

F . In
particular, there exists a rank-k matrixX ′ for which ‖X ′STA−A‖2

F ≤ (1+ε)‖A−Ak‖2
F .

Suppose we write X ′ = Y C, where Y is n×k and C is k×s. Now consider the problem
minY ‖Y CSTA − A‖2

F . Suppose we apply a sketch T ′S ′ to the right of this problem,
obtaining the problem minY ‖Y CSTAT ′S ′ −AT ′S ′‖2

F . Then since CSTA has rank k,
we again have that S ′T ′ has the two properties (1) and (2) of the first part of this
problem, and therefore if Y ′ is the minimizer to minY ‖Y CSTAT ′S ′ − AT ′S ′‖2

F , then
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‖Y ′CSTA−A‖2
F ≤ (1+ ε) minY ‖Y CSTA−A‖2

F ≤ (1+O(ε))‖A−Ak‖2
F . Importantly

though Y ′ = AT ′S ′(CSTAT ′S ′)−, and is therefore a rank-k matrix in the column
span of AT ′S ′. Thus, AT ′S ′(CSTAT ′S)−CSTA is a rank-k matrix in the column
span of AT ′S ′ and in the row span of STA providing a (1 +O(ε))-approximate rank-k
approximation. It follows that if X ′ is the solution to minrank−k X ‖AT ′S ′XSTA−A‖2

F ,
then ‖AT ′S ′X ′STA− A‖2

F ≤ (1 +O(ε))‖A− Ak‖2
F .

(4) Given the previous part, we just need to solve the optimization problem

min
rank−k X

‖AT ′S ′XSTA− A‖2
F .

We can apply the technique of affine embeddings that we saw in class. Namely,
suppose we choose two CountSketch matrices R1 and R2, where R1 has poly(k/ε)
rows and R2 has poly(k/ε) columns. Then with arbitrarily large constant proba-
bility, for all X, ‖R1AT

′S ′XSTA − R1A‖2
F = (1 ± ε)‖AT ′S ′XSTA − A‖2

F . Also,
for all X, ‖R1AT

′S ′XSTAR2 − R1AR2‖2
F = (1 ± ε)‖R1AT

′S ′XSTA − R1A‖2
F =

(1 ± O(ε))‖AT ′S ′XSTA − A‖2
F . We can compute R1A in O(nnz(A)) time. Noting

that nnz(R1A) ≤ nnz(A), we can compute R1AR2 in O(nnz(A)) time as well. We can
also compute TAR2 in O(nnz(A)) time and R1AT

′ in O(nnz(A)) time. The remaining
products R1AT

′S ′ and STAR1 can each be computed in poly(k/ε) time. At this point
the optimal rank-k X ′ is given by the formula in the hint: let (R1AT

′S ′) = UΣV T be
its SVD, and let STAR2 = AZBT be its SVD. Then

X ′ = (R2AT
′S ′)−(UUT (R1AR2)BBT )k(STAR2)−.

Note that all operations are on low dimensional matrices and can be performed in
poly(k/ε) time, giving a total of nnz(A) + poly(k/ε) time for this part of the problem.

We can compute AT ′ in nnz(A) time. This matrix is n × O(k2 + k/ε). We can
then compute AT ′S ′ in Õ(n(k2 + k/ε)) time. This matrix is n × Õ(k/ε). Similarly,
we can compute STA in nnz(A) + Õ(d(k2 + k/ε)) time. This matrix is Õ(k/ε) × d.
We can compute the SVD of X ′, denoted by UΣV T , in poly(k/ε) time, where UΣ is
Õ(k/ε)× k, and V T is k× Õ(k/ε). We can compute L = AT ′S ′(UΣ) in Õ(nk2/ε) time
and similarly compute R = V TSTA in Õ(dk2/ε) time. In total, we can output L and
R in nnz(A) + Õ((n+ d)k2/ε) + poly(k/ε) time.

Problem 3: Spectral Norm Low Rank Approximation
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(1) Consider ‖xA− x[APB]k|22 for an arbitrary unit vector x. We thus have,

‖xA− x[APB]k‖2
2 = ‖xA− xAPB‖2

2 + ‖xAPB − x[APB]k‖2
2

≤ ‖xA− xÃ‖2
2 + ‖xAPB − x[APB]k‖2

2

≤ ‖A− Ã‖2
2 + ‖APB − [APB]k‖2

2

≤ ‖A− Ã‖2
2 + ‖APB − Ã‖2

2

= ‖A− Ã‖2
2 + ‖(A− Ã)PB‖2

2

≤ ‖A− Ã‖2
2 + ‖A− Ã‖2

2

= 2‖A− Ã‖2
2,

where the first equality is the Pythagorean theorem, the first inequality holds since
xAPB is the closest point to xA in the row span of B while xÃ is just an arbitrary point
in the row span of B, the second inequality just uses the definition of the operator norm
being the supremum over all unit vectors x, the third inequality uses that [APB]k is the
best rank-k approximation to APB given by the SVD whereas Ã is just an arbitrary
rank-k matrix, the second equality holds since ÃPB = Ã since the rows of Ã are already
in the row span of B, and the last inequality holds since projections cannot increase
spectral norm.

(2) We note that B = Ar, and so ‖B−Bk‖2 = σk+1(A)r. Given that we have ‖A−PA‖2 ≤
‖B − PB‖1/r

2 , we have

‖A− PA‖2 ≤ ‖B − PB‖1/r
2

≤ ‖B −Bk‖1/r
2 (poly(n))1/(2r)

= ‖B −Bk‖1/r
2 2Θ(logn)/r

= (1 + ε)‖A− Ak‖2,

where we have used that 2Θ(logn)/r ≤ (1 + ε) for an appropriate r = O((log n)/ε).

(3) We are given that ‖B−PB‖2
2 ≤ ‖B−Bk‖2

2 +‖(B−Bk)G(V T
k G)−‖2

2. Suppose we write
B − Bk = Un−kΣn−kV

T
n−k in its SVD. Then we have using sub-multiplicativity of the

operator norm,

‖(B −Bk)G(V T
k G)−‖2

2 = ‖Un−kΣn−kV
T
n−kG(V T

k G)−‖2
2

≤ ‖Un−kΣn−k‖2
2‖V T

n−kG‖2
2‖(V T

k G)−‖2
2

= ‖B −Bk‖2
2‖V T

n−kG‖2
2‖(V T

k G)−‖2
2,

and so ‖B − PB‖2
2 ≤ ‖B −Bk‖2

2(1 + ‖V T
n−kG‖2

2‖(V T
k G)−‖2

2.

(4) We showed in class that the Gaussian distribution is rotationally invariant, and there-
fore V T

n−kG is an n− k × k matrix of i.i.d. normal random variables, and so using the
given fact, we have ‖V T

n−kG‖2
2 = O(n) with probability at least 99/100. Similarly, V T

k G
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is a k×k matrix of i.i.d. normal random variables, and so using the given fact, we have
σk(V

T
k G)2 ≥ (C ′)2/k with probability at least 99/100, for a constant C ′ > 0. Conse-

quently, ‖(V T
k G)−‖2

2 = 1
σk(V T

k G)2
= O(k) with this probability. Hence, with probability

at least 9/10, we have ‖B − PB‖2
2 ≤ ‖B −Bk‖2

2(1 +O(nk)). Using the second part of
this problem, we conclude that with this probability ‖A− PA‖2 ≤ (1 + ε)‖A− Ak‖2.
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