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Problem Set 1 Solutions

Problem 1: High Probability Matrix Product and Embeddings

(1) Let [`] denote the set {1, 2, 3, . . . , `}. For each i ∈ [`], we compute

si = medianj∈[`]‖A(Si)(Si)TB − A(Sj)(Sj)TB‖F .

We output the index i∗ whose value si∗ is the smallest. We need to show

Pr[‖A(Si∗)(Si∗)TB − AB‖F > ε‖A‖F‖B‖F ] ≤ δ.

By Chernoff bounds, for an appropriate ` = Θ(log(1/δ)) and r = Θ(1/ε2), with prob-
ability at least 1− δ, there is a subset T ⊆ [`] of size at least 3`

5
for which for all i ∈ T ,

‖A(Si)(Si)TB − AB‖F ≤ (ε/3)‖A‖F‖B‖F . We call this event E , and condition on it
occurring. For any i, j ∈ T , by the triangle inequality,

‖A(Si)(Si)TB − A(Sj)(Sj)TB‖F ≤ ‖A(Si)(Si)TB − AB‖F + ‖AB − A(Sj)(Sj)TB‖F
≤ (2ε/3)‖A‖F‖B‖F .

Since |T | > `/2, and we take the median value when forming si and sj, we have
si, sj ≤ (2ε/3)‖A‖F‖B‖F and so si∗ ≤ (2ε/3)‖A‖F‖B‖F . Since we take a median value
to form si∗ and |T | > `/2, there exists a j ∈ T for which

‖A(Si∗)(Si∗)TB − A(Sj)(Sj)TB‖F ≤ si∗ ≤ (2ε/3)‖A‖F‖B‖F .

Hence, for this j ∈ T , by the triangle inequality,

‖A(Si∗)(Si∗)TB − AB‖F ≤ ‖A(Si∗)(Si∗)T − A(Sj)(Sj)TB‖F + ‖A(Sj)(Sj)TB − AB‖F

≤ 2ε

3
‖A‖F‖B‖F +

ε

3
‖A‖F‖B‖F

≤ ε‖A‖F‖B‖F .

The only event we conditioned on was E , so this holds with probability at least 1− δ.

(2) Given an i ∈ [`] for which rank(SiA) = d, we first show how to test for another
j ∈ [`] if ‖SiAx‖2 = (1 ± ε)‖SjAx‖2 for all x. SiA = U iΣi(V i)T in its singular
value decomposition (SVD), the condition that ‖SiAx‖2 = (1 ± ε)2‖SjAx‖2 for all
x is equivalent to the condition that ‖Σi(V i)Tx‖2 = (1 ± ε)2‖Σj(V j)Tx‖2 for all x.
Since SiA has rank d, Σi(V i)T is an invertible d × d matrix, and so we may make
the change of variables y = Σi(V i)Tx, and so this condition is equivalent to ‖y‖2 =
(1±ε)2‖Σj(V j)TV i(Σi)−1y‖2 for all y. The latter condition is equivalent to all singular
values of Σj(V j)TV i(Σi)−1 being in the range [(1 − ε)2, (1 + ε)2]. Thus, by this chain



of equivalences, we have that ‖SiAx‖2 = (1 ± ε)2‖SjAx‖2 if and only if all singular
values of Σj(V j)TV i(Σi)−1 are in the range [(1− ε)2, (1 + ε)2].

Our algorithm simply outputs any i ∈ [`] for which there are at least 3`
5

indices j ∈ [`]
for which ‖SiAx‖2 = (1±ε)2‖SjAx‖2 for all x, using the procedure above. If there is no
such i ∈ [`], we output FAIL. Let E be the event that there is a set T ⊆ [`] of size at least
3`
5

for which for all i ∈ T , ‖SiAx‖2 = (1± ε)‖Ax‖2 simultaneously for all x ∈ Rd. By
Chernoff bounds, Pr[E ] ≥ 1−δ, and we condition on E occurring. Note that conditioned
on E , we will not output FAIL, since any i ∈ T satisfies rank(SiA) = d and that there
are at least 3`

5
indices j ∈ [`] for which ‖SiAx‖2 = (1 ± ε)2‖SjAx‖2 for all x, so the

procedure in the previous paragraph finds all such j. On the other hand, for any i ∈ [`]
for which there are at least 3`

5
indices j ∈ [`] for which ‖SiAx‖2 = (1± ε)2‖SjAx‖2 for

all x, by the pigeonhole principle there is a j ∈ T for which ‖SiAx‖2 = (1±ε)2‖SjAx‖2
for all x, and since ‖SjAx‖2 = (1±ε)‖Ax‖2 for all x, we have ‖SiAx‖2 = (1±ε)3‖Ax‖2
for all x, and so ‖SiAx‖2 = (1±Θ(ε))‖Ax‖2 for all x, as needed. Since the only event
we conditioned on was E , which occurs with probability at least 1 − δ, our output is
successful with probability at least 1− δ.

Problem 2: Linear Dependence on ε in Regression

(1) Since U is an orthonormal basis for the column span of A, we can write y′ = Ux
for some x ∈ Rr. Consequently, ‖SUx′ − Sb‖2 ≤ ‖SAy′ − Sb‖2. We can also write
x′ = Ay for some y ∈ Rd since U and A have the same column span, so ‖SAy′ −
Sb‖2 ≤ ‖SUx′ − Sb‖2, and so ‖SU ′x − Sb‖2 = ‖SAy′ − Sb‖2. A similar argument
shows that minx ‖Ux − b‖2 = miny ‖Ay − b‖2. It now follows that if ‖Ux′ − b‖2 ≤
(1 + ε) minx ‖Ux− b‖2, then

‖Ay′ − b‖2 = ‖Ux′ − b‖2 ≤ (1 + ε) min
x
‖Ux− b‖2 = (1 + ε) min

y
‖Ay − b‖2.

(2) By the Pythagorean theorem, ‖Ux′ − b‖22 = ‖UUT b − b‖22 + ‖Ux′ − UUT b‖22, that is,
the squared distance from b to a vector Ux′ in the column span of U is the sum of
the squared distance of b to its projection onto the column span of U and the squared
distance of its projection to Ux′. We also know that x∗ = UT b by the normal equations
for regression. Plugging this expression in for x∗ completes the proof.

(3) We have x′ = (SU)−Sb and since S is an O(1)-approximate subspace embedding for the
column span of U , which has linearly independent columns, we have that SU has lin-
early independent columns. So, (SU)− = ((SU)TSU)−1(SU)T = (UTSTSU)−1UTST

and x′ = (UTSTSU)−1UTSTSb. We also have x∗ = UT b. So,

‖U(x′ − x∗)‖22 = O(1)‖U(UTSTSU)−1UTSTSb− UUT b‖22
= O(1)‖(UTSTSU)−1UTSTSb− UT b‖22.
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Since S is a (1± 1/2)-subspace embedding with probability at least 9/10 by property
(1), all singular values of (UTSTSU)−1 are in the range [2/3, 2], and thus

‖(UTSTSU)−1UTSTSb− UT b‖22 = O(1)‖(UTSTSU)((UTSTSU)−1UTSTSb− UT b)‖22
= O(1)‖UTSTSb− UTSTSUUT b‖22
= O(1)‖UTSTS(b− Ux∗)‖22.

We now use the approximate matrix product property, which says with probability at
least 9/10,

‖UTSTS(b− Ux∗)‖22 = O(ε/d)‖UT‖2F · ‖Ux∗ − b‖22 = O(ε)‖Ux∗ − b‖22,

which therefore holds with probability at least 1− 1/10− 1/10 = 4/5.

Problem 3: CountSketch Preserves Frobenius Norm We give an elementary argu-
ment based on Chebyshev’s inequality. Let Ai denote the i-th column of A, for i ∈ [d]. For
each of the d rows i of S, let h(i) ∈ [r] denote the location of the single non-zero entry of S
in the i-th row, and let σi ∈ {−1, 1} be this entry. Then

‖AS‖2F =
∑
j∈[r]

‖
∑

i∈[d] such that h(i)=j

σiAi‖22 =
∑
j∈[r]

∑
i,i′∈[d] such that h(i)=j

σiσi′〈Ai, Ai〉.

For any fixed h, taking expectation over σ we have that E[σiσi′ ] = 0 unless i = i′, in which
case E[σiσi′ ] = 1. It follows by linearity of expectation that

E[‖AS‖2F ] =
∑
j∈[r]

∑
i such that h(i)=j

‖Ai‖22 = ‖A‖2F .

We also have

‖AS‖4F =
∑

j1,j2∈[r]

∑
i1,i2 such that h(i1)=h(i2)=j1

σi1σi2〈Ai1 , Ai2〉
∑

i3,i4 such that h(i3)=h(i4)=j2

σi3σi4〈Ai3 ,i4 〉.

Let δ(h(i1) = j1) be 1 if h(i1) = j1, and be 0 otherwise. Then we can write E[‖AS‖4F ] as∑
j1,j2∈[r],i1,i2,i3,i4∈[d] E[δ(h(i1) = j1)δ(h(i2) = j1)δ(h(i3) = j2)δ(h(i4) = j2)σi1σi2σi3σi4 ]

·〈Ai1 , Ai2〉〈Ai3 , Ai4〉

Taking expectation only with respect to σ, to have a non-zero expectation, we must be able
to partition {i1, i2, i3, i4} into equal pairs. This drives the analysis behind the following cases.

Case: j1 6= j2. Then the set {i1, i2} must be disjoint from {i3, i4} since we cannot have
h(i) = j1 and h(i) = j2 for some j1 6= j2. It follows that i1 = i2 and i3 = i4 and i1 6= i3 are
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the only terms which contribute to the expectation. It follows that the total contribution
from terms for which j1 6= j2 is∑

j1 6=j2∈[r],i1 6=i3∈[d]

1

r2
‖Ai1‖22‖Ai3‖22 ≤ ‖A‖4F −

∑
i

‖Ai‖42.

Case: j1 = j2, and i1 = i2 = i3 = i4. The total contribution from these terms is∑
j1∈[r],i1∈[d]

1

r
‖Ai1‖42 =

∑
i

‖Ai‖42.

Case: j1 = j2, and i1 = i2, i3 = i4, i1 6= i3. The total contribution from these terms is∑
j1∈[r],i1 6=i3∈[d]

1

r2
‖Ai1‖22‖Ai3‖22 = O(1/r)‖A‖4F .

Case: j1 = j2, and i1 = i3, i2 = i4, i1 6= i2. The total contribution from these terms is∑
j1∈[r],i1 6=i2∈[d]

1

r2
〈Ai1 , Ai2〉2 = O(1/r)‖A‖4F .

Case: j1 = j2, and i1 = i4, i2 = i3, i1 6= i2. This case is the same as the previous case, and
contributes O(1/r)‖A‖4F .

In total, we have E[‖AS‖4F ] = ‖A‖4F +O(1/r)‖A‖4F . Hence, Var[‖AS‖2F ] = E[‖AS‖4F ]−
E2[‖AS‖2F ] = O(1/r)‖A‖4F . By Chebyshev’s inequality,

Pr[|‖AS‖2F − ‖A‖2F | ≥ ε‖A‖2F ] =
O(1/r)‖A‖4F
ε2‖A‖4F

≤ 1

10
,

for suitably chosen r = Θ(1/ε2).

Problem 4: Sketching Structured Regression Problems

(1) Consider a family Fm of pairs (A, b) defined as follows. Let Ao be the n × d matrix
with upper d × d matrix the d × d identity matrix, and Ao

i,j = 1/d for all i ∈ {d +
1, d + 2, . . . , d + m/d− 1} and all j ∈ {1, 2, . . . , d}. For i′ ∈ {d + 1, . . . , d + m/d− 1}
and j′ ∈ {1, 2, . . . , d}, let Ai′,j′ = Ao + (3n − 1/d)ei′,j′ , where ei′,j′ is the matrix with
a single 1 in the (i′, j′)-th entry, and zeros in all remaining entries. Let bi = 1 for
i ∈ {1, 2, . . . , d+m/d− 1}, and bi = 0 for i ∈ {d+m/d, . . . , n}. Define Fm to be the
union of (Ao, b) and (Ai′,j′ , b) for i′ ∈ {d+ 1, . . . , d+m/d− 1} and j′ ∈ {1, 2, . . . , d}.
Notice that setting x = 1d allows for Aox = b, and so the regression cost is 0 in this
case. Moreover, x = 1d is the unique solution giving cost 0, and so must be returned
by any regression algorithm achieving relative error if the algorithm succeeds. On the
other hand for x = 1d, ‖Ai′,j′x− b‖22 ≥ (3n− 1)2 for any i′ ∈ {d+ 1, . . . , d+m/d− 1}
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and j′ ∈ {1, 2, . . . , d}, but setting x = 0d gives ‖Ai′,j′x− b‖22 = ‖b‖22 ≤ n, and so x = 1d

does not provide a 2-approximate solution. It follows that the output of the regression
problem can distinguish if the matrix A is Ao or if it is Ai′,j′ for some i′, j′.

We define two distributions µ and ν: µ just has support equal to (Ao, b), and so a
sample from µ always equals (Ao, b). On the other hand, ν is the distribution obtained
by choosing uniformly random and independent i′ ∈ {d + 1, . . . , d + m/d − 1} and
j′ ∈ {1, 2, . . . , d} and outputting (Ai′,j′ , b). By Yao’s minimax principle, if there is a
randomized algorithm which reads o(m) entries in expectation to solve the approximate
regression problem with probability 3/4, then there is a deterministic algorithm which
reads o(m) entries in expectation to solve the approximate regression problem given
a random input from distribution (µ + ν)/2. By Markov’s bound, this implies there
exists a deterministic algorithm for solving the approximate regression problem with
probability at least 2/3 from a random input from (µ+ ν)/2, and which always reads
o(m) entries. By the previous paragraph, this deterministic algorithm succeeds, with
probability at least 2/3, in deciding if the input comes from µ or from ν. We assume
such an algorithm exists and derive a contradiction.

We can assume the deterministic algorithm only queries entries in rows numbered
d + 1, . . . , d + m/d − 1, since all other rows have the same entries for all matrices in
all pairs in Fm. Further, the algorithm can only distinguish the two distributions if
it reads an entry of value 3n, and when it does, it can correctly output that (A, b)
was drawn from ν. Thus, we can identify the deterministic algorithm with a subset
S of o(m) entries in these rows. However, the probability that a matrix Ai′,j′ from a
pair in ν satisfies (i′, j′) ∈ S is |S|/m = o(1), and therefore with probability 1 − o(1)
the algorithm only reads entries of value 1/d. Thus, the correctness probability of the
algorithm can be at most (1 + o(1))/2 < 2/3, a contradiction.

(2) Let S be an r × n CountSketch matrix, for r = O(d/ε2). Let h : [n] → [r] and σ :
[n]→ {−1, 1} be the associated hash and sign functions. We know that if we compute
S ·A and S · b, then if x′ = (SA)−Sb, we have ‖Ax′− b‖2 ≤ (1 + ε) minx∈Rd ‖Ax− b‖2.
Also given SA, one can compute Sb in O(n) time and then solve for x′ in poly(d/ε)
time. Thus, it suffices to show how to compute SA in (n + d) · poly(log n) time. For
each i ∈ [r], let Ai be the matrix formed by A by removing all rows Aj for which
h(j) 6= i. Let σi be the vector formed from (σ1, . . . , σn) ∈ {−1, 1}n by removing
all entries for which h(j) 6= i. Then, the i-th row of (SA), denoted (SA)i, satisfies
(SA)i = σiAi. Observe that Ai, being a subset of rows of A, is itself a Vandermonde
matrix. Therefore, by the hint, one can compute σiAi in (ri + d) · poly(log(rid)) time,
where ri is the number of rows of Ai. It follows that SA can be computed in time∑
i

(ri+d) ·poly(log(rid)) ≤ (n+rd) ·poly(log(nd)) ≤ n ·poly(log n)+poly(d(log n)/ε).
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