15-859 Algorithms for Big Data - Fall 2017 Problem Set 1 Solutions

Problem 1: High Probability Matrix Product and Embeddings

(1) Let $[\ell]$ denote the set $\{1,2,3, \ldots, \ell\}$. For each $i \in[\ell]$, we compute

$$
s_{i}=\operatorname{median}_{j \in[\ell]}\left\|A\left(S^{i}\right)\left(S^{i}\right)^{T} B-A\left(S^{j}\right)\left(S^{j}\right)^{T} B\right\|_{F}
$$

We output the index i^{*} whose value $s_{i^{*}}$ is the smallest. We need to show

$$
\operatorname{Pr}\left[\left\|A\left(S^{i^{*}}\right)\left(S^{i^{*}}\right)^{T} B-A B\right\|_{F}>\epsilon\|A\|_{F}\|B\|_{F}\right] \leq \delta
$$

By Chernoff bounds, for an appropriate $\ell=\Theta(\log (1 / \delta))$ and $r=\Theta\left(1 / \epsilon^{2}\right)$, with probability at least $1-\delta$, there is a subset $T \subseteq[\ell]$ of size at least $\frac{3 \ell}{5}$ for which for all $i \in T$, $\left\|A\left(S^{i}\right)\left(S^{i}\right)^{T} B-A B\right\|_{F} \leq(\epsilon / 3)\|A\|_{F}\|B\|_{F}$. We call this event \mathcal{E}, and condition on it occurring. For any $i, j \in T$, by the triangle inequality,

$$
\begin{aligned}
\left\|A\left(S^{i}\right)\left(S^{i}\right)^{T} B-A\left(S^{j}\right)\left(S^{j}\right)^{T} B\right\|_{F} & \leq\left\|A\left(S^{i}\right)\left(S^{i}\right)^{T} B-A B\right\|_{F}+\left\|A B-A\left(S^{j}\right)\left(S^{j}\right)^{T} B\right\|_{F} \\
& \leq(2 \epsilon / 3)\|A\|_{F}\|B\|_{F}
\end{aligned}
$$

Since $|T|>\ell / 2$, and we take the median value when forming s_{i} and s_{j}, we have $s_{i}, s_{j} \leq(2 \epsilon / 3)\|A\|_{F}\|B\|_{F}$ and so $s_{i^{*}} \leq(2 \epsilon / 3)\|A\|_{F}\|B\|_{F}$. Since we take a median value to form $s_{i^{*}}$ and $|T|>\ell / 2$, there exists a $j \in T$ for which

$$
\left\|A\left(S^{i^{*}}\right)\left(S^{i^{*}}\right)^{T} B-A\left(S^{j}\right)\left(S^{j}\right)^{T} B\right\|_{F} \leq s_{i^{*}} \leq(2 \epsilon / 3)\|A\|_{F}\|B\|_{F}
$$

Hence, for this $j \in T$, by the triangle inequality,

$$
\begin{aligned}
\left\|A\left(S^{i^{*}}\right)\left(S^{i^{*}}\right)^{T} B-A B\right\|_{F} & \leq\left\|A\left(S^{i^{*}}\right)\left(S^{i^{*}}\right)^{T}-A\left(S^{j}\right)\left(S^{j}\right)^{T} B\right\|_{F}+\left\|A\left(S^{j}\right)\left(S^{j}\right)^{T} B-A B\right\|_{F} \\
& \leq \frac{2 \epsilon}{3}\|A\|_{F}\|B\|_{F}+\frac{\epsilon}{3}\|A\|_{F}\|B\|_{F} \\
& \leq \epsilon\|A\|_{F}\|B\|_{F} .
\end{aligned}
$$

The only event we conditioned on was \mathcal{E}, so this holds with probability at least $1-\delta$.
(2) Given an $i \in[\ell]$ for which $\operatorname{rank}\left(S^{i} A\right)=d$, we first show how to test for another $j \in[\ell]$ if $\left\|S^{i} A x\right\|_{2}=(1 \pm \varepsilon)\left\|S^{j} A x\right\|_{2}$ for all $x . \quad S^{i} A=U^{i} \Sigma^{i}\left(V^{i}\right)^{T}$ in its singular value decomposition (SVD), the condition that $\left\|S^{i} A x\right\|_{2}=(1 \pm \varepsilon)^{2}\left\|S^{j} A x\right\|_{2}$ for all x is equivalent to the condition that $\left\|\Sigma^{i}\left(V^{i}\right)^{T} x\right\|_{2}=(1 \pm \varepsilon)^{2}\left\|\Sigma^{j}\left(V^{j}\right)^{T} x\right\|_{2}$ for all x. Since $S^{i} A$ has rank $d, \Sigma^{i}\left(V^{i}\right)^{T}$ is an invertible $d \times d$ matrix, and so we may make the change of variables $y=\Sigma^{i}\left(V^{i}\right)^{T} x$, and so this condition is equivalent to $\|y\|_{2}=$ $(1 \pm \varepsilon)^{2}\left\|\Sigma^{j}\left(V^{j}\right)^{T} V^{i}\left(\Sigma^{i}\right)^{-1} y\right\|_{2}$ for all y. The latter condition is equivalent to all singular values of $\Sigma^{j}\left(V^{j}\right)^{T} V^{i}\left(\Sigma^{i}\right)^{-1}$ being in the range $\left[(1-\varepsilon)^{2},(1+\varepsilon)^{2}\right]$. Thus, by this chain
of equivalences, we have that $\left\|S^{i} A x\right\|_{2}=(1 \pm \varepsilon)^{2}\left\|S^{j} A x\right\|_{2}$ if and only if all singular values of $\Sigma^{j}\left(V^{j}\right)^{T} V^{i}\left(\Sigma^{i}\right)^{-1}$ are in the range $\left[(1-\varepsilon)^{2},(1+\varepsilon)^{2}\right]$.
Our algorithm simply outputs any $i \in[\ell]$ for which there are at least $\frac{3 \ell}{5}$ indices $j \in[\ell]$ for which $\left\|S^{i} A x\right\|_{2}=(1 \pm \varepsilon)^{2}\left\|S^{j} A x\right\|_{2}$ for all x, using the procedure above. If there is no such $i \in[\ell]$, we output FAIL. Let \mathcal{E} be the event that there is a set $T \subseteq[\ell]$ of size at least $\frac{3 \ell}{5}$ for which for all $i \in T,\left\|S^{i} A x\right\|_{2}=(1 \pm \epsilon)\|A x\|_{2}$ simultaneously for all $x \in \mathbb{R}^{d}$. By Chernoff bounds, $\operatorname{Pr}[\mathcal{E}] \geq 1-\delta$, and we condition on \mathcal{E} occurring. Note that conditioned on \mathcal{E}, we will not output FAIL, since any $i \in T$ satisfies $\operatorname{rank}\left(S^{i} A\right)=d$ and that there are at least $\frac{3 \ell}{5}$ indices $j \in[\ell]$ for which $\left\|S^{i} A x\right\|_{2}=(1 \pm \varepsilon)^{2}\left\|S^{j} A x\right\|_{2}$ for all x, so the procedure in the previous paragraph finds all such j. On the other hand, for any $i \in[\ell]$ for which there are at least $\frac{3 \ell}{5}$ indices $j \in[\ell]$ for which $\left\|S^{i} A x\right\|_{2}=(1 \pm \varepsilon)^{2}\left\|S^{j} A x\right\|_{2}$ for all x, by the pigeonhole principle there is a $j \in T$ for which $\left\|S^{i} A x\right\|_{2}=(1 \pm \varepsilon)^{2}\left\|S^{j} A x\right\|_{2}$ for all x, and since $\left\|S^{j} A x\right\|_{2}=(1 \pm \varepsilon)\|A x\|_{2}$ for all x, we have $\left\|S^{i} A x\right\|_{2}=(1 \pm \varepsilon)^{3}\|A x\|_{2}$ for all x, and so $\left\|S^{i} A x\right\|_{2}=(1 \pm \Theta(\varepsilon))\|A x\|_{2}$ for all x, as needed. Since the only event we conditioned on was \mathcal{E}, which occurs with probability at least $1-\delta$, our output is successful with probability at least $1-\delta$.

Problem 2: Linear Dependence on ϵ in Regression

(1) Since U is an orthonormal basis for the column span of A, we can write $y^{\prime}=U x$ for some $x \in \mathbb{R}^{r}$. Consequently, $\left\|S U x^{\prime}-S b\right\|_{2} \leq\left\|S A y^{\prime}-S b\right\|_{2}$. We can also write $x^{\prime}=A y$ for some $y \in \mathbb{R}^{d}$ since U and A have the same column span, so $\| S A y^{\prime}-$ $S b\left\|_{2} \leq\right\| S U x^{\prime}-S b \|_{2}$, and so $\left\|S U^{\prime} x-S b\right\|_{2}=\left\|S A y^{\prime}-S b\right\|_{2}$. A similar argument shows that $\min _{x}\|U x-b\|_{2}=\min _{y}\|A y-b\|_{2}$. It now follows that if $\left\|U x^{\prime}-b\right\|_{2} \leq$ $(1+\epsilon) \min _{x}\|U x-b\|_{2}$, then

$$
\left\|A y^{\prime}-b\right\|_{2}=\left\|U x^{\prime}-b\right\|_{2} \leq(1+\epsilon) \min _{x}\|U x-b\|_{2}=(1+\epsilon) \min _{y}\|A y-b\|_{2} .
$$

(2) By the Pythagorean theorem, $\left\|U x^{\prime}-b\right\|_{2}^{2}=\left\|U U^{T} b-b\right\|_{2}^{2}+\left\|U x^{\prime}-U U^{T} b\right\|_{2}^{2}$, that is, the squared distance from b to a vector $U x^{\prime}$ in the column span of U is the sum of the squared distance of b to its projection onto the column span of U and the squared distance of its projection to $U x^{\prime}$. We also know that $x^{*}=U^{T} b$ by the normal equations for regression. Plugging this expression in for x^{*} completes the proof.
(3) We have $x^{\prime}=(S U)^{-} S b$ and since S is an $O(1)$-approximate subspace embedding for the column span of U, which has linearly independent columns, we have that $S U$ has linearly independent columns. So, $(S U)^{-}=\left((S U)^{T} S U\right)^{-1}(S U)^{T}=\left(U^{T} S^{T} S U\right)^{-1} U^{T} S^{T}$ and $x^{\prime}=\left(U^{T} S^{T} S U\right)^{-1} U^{T} S^{T} S b$. We also have $x^{*}=U^{T} b$. So,

$$
\begin{aligned}
\left\|U\left(x^{\prime}-x^{*}\right)\right\|_{2}^{2} & =O(1)\left\|U\left(U^{T} S^{T} S U\right)^{-1} U^{T} S^{T} S b-U U^{T} b\right\|_{2}^{2} \\
& =O(1)\left\|\left(U^{T} S^{T} S U\right)^{-1} U^{T} S^{T} S b-U^{T} b\right\|_{2}^{2} .
\end{aligned}
$$

Since S is a $(1 \pm 1 / 2)$-subspace embedding with probability at least $9 / 10$ by property (1), all singular values of $\left(U^{T} S^{T} S U\right)^{-1}$ are in the range [2/3,2], and thus

$$
\begin{aligned}
\left\|\left(U^{T} S^{T} S U\right)^{-1} U^{T} S^{T} S b-U^{T} b\right\|_{2}^{2} & =O(1)\left\|\left(U^{T} S^{T} S U\right)\left(\left(U^{T} S^{T} S U\right)^{-1} U^{T} S^{T} S b-U^{T} b\right)\right\|_{2}^{2} \\
& =O(1)\left\|U^{T} S^{T} S b-U^{T} S^{T} S U U^{T} b\right\|_{2}^{2} \\
& =O(1)\left\|U^{T} S^{T} S\left(b-U x^{*}\right)\right\|_{2}^{2} .
\end{aligned}
$$

We now use the approximate matrix product property, which says with probability at least $9 / 10$,

$$
\left\|U^{T} S^{T} S\left(b-U x^{*}\right)\right\|_{2}^{2}=O(\epsilon / d)\left\|U^{T}\right\|_{F}^{2} \cdot\left\|U x^{*}-b\right\|_{2}^{2}=O(\epsilon)\left\|U x^{*}-b\right\|_{2}^{2}
$$

which therefore holds with probability at least $1-1 / 10-1 / 10=4 / 5$.

Problem 3: CountSketch Preserves Frobenius Norm We give an elementary argument based on Chebyshev's inequality. Let A_{i} denote the i-th column of A, for $i \in[d]$. For each of the d rows i of S, let $h(i) \in[r]$ denote the location of the single non-zero entry of S in the i-th row, and let $\sigma_{i} \in\{-1,1\}$ be this entry. Then

$$
\|A S\|_{F}^{2}=\sum_{j \in[r]}\left\|\sum_{i \in[d] \text { such that } h(i)=j} \sigma_{i} A_{i}\right\|_{2}^{2}=\sum_{j \in[r] i, i^{\prime} \in[d]} \sum_{\text {such that } h(i)=j} \sigma_{i} \sigma_{i^{\prime}}\left\langle A_{i}, A_{i}\right\rangle .
$$

For any fixed h, taking expectation over σ we have that $\mathbf{E}\left[\sigma_{i} \sigma_{i^{\prime}}\right]=0$ unless $i=i^{\prime}$, in which case $\mathbf{E}\left[\sigma_{i} \sigma_{i^{\prime}}\right]=1$. It follows by linearity of expectation that

$$
\mathbf{E}\left[\|A S\|_{F}^{2}\right]=\sum_{j \in[r] i \text { such that }} \sum_{h(i)=j}\left\|A_{i}\right\|_{2}^{2}=\|A\|_{F}^{2}
$$

We also have

$$
\|A S\|_{F}^{4}=\sum_{j_{1}, j_{2} \in[r] i_{1}, i_{2} \text { such that } h\left(i_{1}\right)=h\left(i_{2}\right)=j_{1}} \sigma_{i_{1}} \sigma_{i_{2}}\left\langle A_{i_{1}}, A_{i_{2}}\right\rangle \sum_{i_{3}, i_{4} \text { such that } h\left(i_{3}\right)=h\left(i_{4}\right)=j_{2}} \sigma_{i_{3}} \sigma_{i_{4}}\left\langle A_{i_{3}, i_{4}}\right\rangle .
$$

Let $\delta\left(h\left(i_{1}\right)=j_{1}\right.$) be 1 if $h\left(i_{1}\right)=j_{1}$, and be 0 otherwise. Then we can write $\mathbf{E}\left[\|A S\|_{F}^{4}\right]$ as

$$
\begin{array}{cl}
\sum_{j_{1}, j_{2} \in[r], i_{1}, i_{2}, i_{3}, i_{4} \in[d]} & \mathbf{E}\left[\delta\left(h\left(i_{1}\right)=j_{1}\right) \delta\left(h\left(i_{2}\right)=j_{1}\right) \delta\left(h\left(i_{3}\right)=j_{2}\right) \delta\left(h\left(i_{4}\right)=j_{2}\right) \sigma_{i_{1}} \sigma_{i_{2}} \sigma_{i_{3}} \sigma_{i_{4}}\right] \\
& \cdot\left\langle A_{i_{1}}, A_{i_{2}}\right\rangle\left\langle A_{i_{3}}, A_{i_{4}}\right\rangle
\end{array}
$$

Taking expectation only with respect to σ, to have a non-zero expectation, we must be able to partition $\left\{i_{1}, i_{2}, i_{3}, i_{4}\right\}$ into equal pairs. This drives the analysis behind the following cases.

Case: $j_{1} \neq j_{2}$. Then the set $\left\{i_{1}, i_{2}\right\}$ must be disjoint from $\left\{i_{3}, i_{4}\right\}$ since we cannot have $h(i)=j_{1}$ and $h(i)=j_{2}$ for some $j_{1} \neq j_{2}$. It follows that $i_{1}=i_{2}$ and $i_{3}=i_{4}$ and $i_{1} \neq i_{3}$ are
the only terms which contribute to the expectation. It follows that the total contribution from terms for which $j_{1} \neq j_{2}$ is

$$
\sum_{j_{1} \neq j_{2} \in[r], i_{1} \neq i_{3} \in[d]} \frac{1}{r^{2}}\left\|A_{i_{1}}\right\|_{2}^{2}\left\|A_{i_{3}}\right\|_{2}^{2} \leq\|A\|_{F}^{4}-\sum_{i}\left\|A_{i}\right\|_{2}^{4}
$$

Case: $j_{1}=j_{2}$, and $i_{1}=i_{2}=i_{3}=i_{4}$. The total contribution from these terms is

$$
\sum_{j_{1} \in[r], i_{1} \in[d]} \frac{1}{r}\left\|A_{i_{1}}\right\|_{2}^{4}=\sum_{i}\left\|A_{i}\right\|_{2}^{4}
$$

Case: $j_{1}=j_{2}$, and $i_{1}=i_{2}, i_{3}=i_{4}, i_{1} \neq i_{3}$. The total contribution from these terms is

$$
\sum_{j_{1} \in[r], i_{1} \neq i_{3} \in[d]} \frac{1}{r^{2}}\left\|A_{i_{1}}\right\|_{2}^{2}\left\|A_{i_{3}}\right\|_{2}^{2}=O(1 / r)\|A\|_{F}^{4}
$$

Case: $j_{1}=j_{2}$, and $i_{1}=i_{3}, i_{2}=i_{4}, i_{1} \neq i_{2}$. The total contribution from these terms is

$$
\sum_{j_{1} \in[r], i_{1} \neq i_{2} \in[d]} \frac{1}{r^{2}}\left\langle A_{i_{1}}, A_{i_{2}}\right\rangle^{2}=O(1 / r)\|A\|_{F}^{4}
$$

Case: $j_{1}=j_{2}$, and $i_{1}=i_{4}, i_{2}=i_{3}, i_{1} \neq i_{2}$. This case is the same as the previous case, and contributes $O(1 / r)\|A\|_{F}^{4}$.

In total, we have $\mathbf{E}\left[\|A S\|_{F}^{4}\right]=\|A\|_{F}^{4}+O(1 / r)\|A\|_{F}^{4}$. Hence, $\operatorname{Var}\left[\|A S\|_{F}^{2}\right]=\mathbf{E}\left[\|A S\|_{F}^{4}\right]-$ $\mathbf{E}^{2}\left[\|A S\|_{F}^{2}\right]=O(1 / r)\|A\|_{F}^{4}$. By Chebyshev's inequality,

$$
\operatorname{Pr}\left[\|A S\|_{F}^{2}-\|A\|_{F}^{2} \mid \geq \epsilon\|A\|_{F}^{2}\right]=\frac{O(1 / r)\|A\|_{F}^{4}}{\epsilon^{2}\|A\|_{F}^{4}} \leq \frac{1}{10}
$$

for suitably chosen $r=\Theta\left(1 / \epsilon^{2}\right)$.

Problem 4: Sketching Structured Regression Problems

(1) Consider a family \mathcal{F}_{m} of pairs (A, b) defined as follows. Let A^{o} be the $n \times d$ matrix with upper $d \times d$ matrix the $d \times d$ identity matrix, and $A_{i, j}^{o}=1 / d$ for all $i \in\{d+$ $1, d+2, \ldots, d+m / d-1\}$ and all $j \in\{1,2, \ldots, d\}$. For $i^{\prime} \in\{d+1, \ldots, d+m / d-1\}$ and $j^{\prime} \in\{1,2, \ldots, d\}$, let $A^{i^{\prime}, j^{\prime}}=A^{o}+(3 n-1 / d) e_{i^{\prime}, j^{\prime}}$, where $e_{i^{\prime}, j^{\prime}}$ is the matrix with a single 1 in the $\left(i^{\prime}, j^{\prime}\right)$-th entry, and zeros in all remaining entries. Let $b_{i}=1$ for $i \in\{1,2, \ldots, d+m / d-1\}$, and $b_{i}=0$ for $i \in\{d+m / d, \ldots, n\}$. Define \mathcal{F}_{m} to be the union of $\left(A^{o}, b\right)$ and $\left(A^{i^{\prime}, j^{\prime}}, b\right)$ for $i^{\prime} \in\{d+1, \ldots, d+m / d-1\}$ and $j^{\prime} \in\{1,2, \ldots, d\}$.
Notice that setting $x=1^{d}$ allows for $A^{o} x=b$, and so the regression cost is 0 in this case. Moreover, $x=1^{d}$ is the unique solution giving cost 0 , and so must be returned by any regression algorithm achieving relative error if the algorithm succeeds. On the other hand for $x=1^{d},\left\|A^{i^{\prime}, j^{\prime}} x-b\right\|_{2}^{2} \geq(3 n-1)^{2}$ for any $i^{\prime} \in\{d+1, \ldots, d+m / d-1\}$
and $j^{\prime} \in\{1,2, \ldots, d\}$, but setting $x=0^{d}$ gives $\left\|A^{i^{\prime}, j^{\prime}} x-b\right\|_{2}^{2}=\|b\|_{2}^{2} \leq n$, and so $x=1^{d}$ does not provide a 2 -approximate solution. It follows that the output of the regression problem can distinguish if the matrix A is A^{o} or if it is $A^{i^{\prime}, j^{\prime}}$ for some i^{\prime}, j^{\prime}.
We define two distributions μ and $\nu: \mu$ just has support equal to $\left(A^{o}, b\right)$, and so a sample from μ always equals $\left(A^{o}, b\right)$. On the other hand, ν is the distribution obtained by choosing uniformly random and independent $i^{\prime} \in\{d+1, \ldots, d+m / d-1\}$ and $j^{\prime} \in\{1,2, \ldots, d\}$ and outputting $\left(A^{i^{\prime}, j^{\prime}}, b\right)$. By Yao's minimax principle, if there is a randomized algorithm which reads $o(m)$ entries in expectation to solve the approximate regression problem with probability $3 / 4$, then there is a deterministic algorithm which reads $o(m)$ entries in expectation to solve the approximate regression problem given a random input from distribution $(\mu+\nu) / 2$. By Markov's bound, this implies there exists a deterministic algorithm for solving the approximate regression problem with probability at least $2 / 3$ from a random input from $(\mu+\nu) / 2$, and which always reads $o(m)$ entries. By the previous paragraph, this deterministic algorithm succeeds, with probability at least $2 / 3$, in deciding if the input comes from μ or from ν. We assume such an algorithm exists and derive a contradiction.

We can assume the deterministic algorithm only queries entries in rows numbered $d+1, \ldots, d+m / d-1$, since all other rows have the same entries for all matrices in all pairs in \mathcal{F}_{m}. Further, the algorithm can only distinguish the two distributions if it reads an entry of value $3 n$, and when it does, it can correctly output that (A, b) was drawn from ν. Thus, we can identify the deterministic algorithm with a subset S of $o(m)$ entries in these rows. However, the probability that a matrix $A^{i^{\prime}, j^{\prime}}$ from a pair in ν satisfies $\left(i^{\prime}, j^{\prime}\right) \in S$ is $|S| / m=o(1)$, and therefore with probability $1-o(1)$ the algorithm only reads entries of value $1 / d$. Thus, the correctness probability of the algorithm can be at most $(1+o(1)) / 2<2 / 3$, a contradiction.
(2) Let S be an $r \times n$ CountSketch matrix, for $r=O\left(d / \epsilon^{2}\right)$. Let $h:[n] \rightarrow[r]$ and σ : $[n] \rightarrow\{-1,1\}$ be the associated hash and sign functions. We know that if we compute $S \cdot A$ and $S \cdot b$, then if $x^{\prime}=(S A)^{-} S b$, we have $\left\|A x^{\prime}-b\right\|_{2} \leq(1+\epsilon) \min _{x \in \mathbb{R}^{d}}\|A x-b\|_{2}$. Also given $S A$, one can compute $S b$ in $O(n)$ time and then solve for x^{\prime} in $\operatorname{poly}(d / \epsilon)$ time. Thus, it suffices to show how to compute $S A$ in $(n+d) \cdot \operatorname{poly}(\log n)$ time. For each $i \in[r]$, let A^{i} be the matrix formed by A by removing all rows A_{j} for which $h(j) \neq i$. Let σ^{i} be the vector formed from $\left(\sigma_{1}, \ldots, \sigma_{n}\right) \in\{-1,1\}^{n}$ by removing all entries for which $h(j) \neq i$. Then, the i-th row of $(S A)$, denoted $(S A)_{i}$, satisfies $(S A)_{i}=\sigma^{i} A^{i}$. Observe that A^{i}, being a subset of rows of A, is itself a Vandermonde matrix. Therefore, by the hint, one can compute $\sigma^{i} A^{i}$ in $\left(r_{i}+d\right) \cdot \operatorname{poly}\left(\log \left(r_{i} d\right)\right)$ time, where r_{i} is the number of rows of A^{i}. It follows that $S A$ can be computed in time

$$
\sum_{i}\left(r_{i}+d\right) \cdot \operatorname{poly}\left(\log \left(r_{i} d\right)\right) \leq(n+r d) \cdot \operatorname{poly}(\log (n d)) \leq n \cdot \operatorname{poly}(\log n)+\operatorname{poly}(d(\log n) / \epsilon)
$$

