15-859 Algorithms for Big Data — Fall 2017 Problem Set 1 Solutions

Problem 1: High Probability Matrix Product and Embeddings

(1) Let $[\ell]$ denote the set $\{1, 2, 3, \dots, \ell\}$. For each $i \in [\ell]$, we compute

$$s_i = \text{median}_{j \in [\ell]} ||A(S^i)(S^i)^T B - A(S^j)(S^j)^T B||_F.$$

We output the index i^* whose value s_{i^*} is the smallest. We need to show

$$\Pr[\|A(S^{i^*})(S^{i^*})^T B - AB\|_F > \epsilon \|A\|_F \|B\|_F] \le \delta.$$

By Chernoff bounds, for an appropriate $\ell = \Theta(\log(1/\delta))$ and $r = \Theta(1/\epsilon^2)$, with probability at least $1 - \delta$, there is a subset $T \subseteq [\ell]$ of size at least $\frac{3\ell}{5}$ for which for all $i \in T$, $||A(S^i)(S^i)^T B - AB||_F \le (\epsilon/3)||A||_F ||B||_F$. We call this event \mathcal{E} , and condition on it occurring. For any $i, j \in T$, by the triangle inequality,

$$||A(S^{i})(S^{i})^{T}B - A(S^{j})(S^{j})^{T}B||_{F} \leq ||A(S^{i})(S^{i})^{T}B - AB||_{F} + ||AB - A(S^{j})(S^{j})^{T}B||_{F}$$

$$\leq (2\epsilon/3)||A||_{F}||B||_{F}.$$

Since $|T| > \ell/2$, and we take the median value when forming s_i and s_j , we have $s_i, s_j \leq (2\epsilon/3) \|A\|_F \|B\|_F$ and so $s_{i^*} \leq (2\epsilon/3) \|A\|_F \|B\|_F$. Since we take a median value to form s_{i^*} and $|T| > \ell/2$, there exists a $j \in T$ for which

$$||A(S^{i^*})(S^{i^*})^T B - A(S^j)(S^j)^T B||_F \le s_{i^*} \le (2\epsilon/3)||A||_F ||B||_F.$$

Hence, for this $j \in T$, by the triangle inequality,

$$||A(S^{i^*})(S^{i^*})^T B - AB||_F \leq ||A(S^{i^*})(S^{i^*})^T - A(S^j)(S^j)^T B||_F + ||A(S^j)(S^j)^T B - AB||_F$$

$$\leq \frac{2\epsilon}{3} ||A||_F ||B||_F + \frac{\epsilon}{3} ||A||_F ||B||_F$$

$$\leq \epsilon ||A||_F ||B||_F.$$

The only event we conditioned on was \mathcal{E} , so this holds with probability at least $1 - \delta$.

(2) Given an $i \in [\ell]$ for which $\operatorname{rank}(S^iA) = d$, we first show how to test for another $j \in [\ell]$ if $||S^iAx||_2 = (1 \pm \varepsilon)||S^jAx||_2$ for all x. $S^iA = U^i\Sigma^i(V^i)^T$ in its singular value decomposition (SVD), the condition that $||S^iAx||_2 = (1 \pm \varepsilon)^2||S^jAx||_2$ for all x is equivalent to the condition that $||\Sigma^i(V^i)^Tx||_2 = (1 \pm \varepsilon)^2||\Sigma^j(V^j)^Tx||_2$ for all x. Since S^iA has rank d, $\Sigma^i(V^i)^T$ is an invertible $d \times d$ matrix, and so we may make the change of variables $y = \Sigma^i(V^i)^Tx$, and so this condition is equivalent to $||y||_2 = (1 \pm \varepsilon)^2||\Sigma^j(V^j)^TV^i(\Sigma^i)^{-1}y||_2$ for all y. The latter condition is equivalent to all singular values of $\Sigma^j(V^j)^TV^i(\Sigma^i)^{-1}$ being in the range $[(1 - \varepsilon)^2, (1 + \varepsilon)^2]$. Thus, by this chain

of equivalences, we have that $||S^iAx||_2 = (1 \pm \varepsilon)^2 ||S^jAx||_2$ if and only if all singular values of $\Sigma^j(V^j)^TV^i(\Sigma^i)^{-1}$ are in the range $[(1-\varepsilon)^2, (1+\varepsilon)^2]$.

Our algorithm simply outputs any $i \in [\ell]$ for which there are at least $\frac{3\ell}{5}$ indices $j \in [\ell]$ for which $\|S^iAx\|_2 = (1\pm\varepsilon)^2\|S^jAx\|_2$ for all x, using the procedure above. If there is no such $i \in [\ell]$, we output FAIL. Let \mathcal{E} be the event that there is a set $T \subseteq [\ell]$ of size at least $\frac{3\ell}{5}$ for which for all $i \in T$, $\|S^iAx\|_2 = (1\pm\epsilon)\|Ax\|_2$ simultaneously for all $x \in \mathbb{R}^d$. By Chernoff bounds, $\Pr[\mathcal{E}] \geq 1-\delta$, and we condition on \mathcal{E} occurring. Note that conditioned on \mathcal{E} , we will not output FAIL, since any $i \in T$ satisfies $\operatorname{rank}(S^iA) = d$ and that there are at least $\frac{3\ell}{5}$ indices $j \in [\ell]$ for which $\|S^iAx\|_2 = (1\pm\varepsilon)^2\|S^jAx\|_2$ for all x, so the procedure in the previous paragraph finds all such j. On the other hand, for any $i \in [\ell]$ for which there are at least $\frac{3\ell}{5}$ indices $j \in [\ell]$ for which $\|S^iAx\|_2 = (1\pm\varepsilon)^2\|S^jAx\|_2$ for all x, by the pigeonhole principle there is a $j \in T$ for which $\|S^iAx\|_2 = (1\pm\varepsilon)^2\|S^jAx\|_2$ for all x, and since $\|S^jAx\|_2 = (1\pm\varepsilon)\|Ax\|_2$ for all x, we have $\|S^iAx\|_2 = (1\pm\varepsilon)^3\|Ax\|_2$ for all x, and so $\|S^iAx\|_2 = (1\pm\varepsilon)\|Ax\|_2$ for all x, as needed. Since the only event we conditioned on was \mathcal{E} , which occurs with probability at least $1-\delta$, our output is successful with probability at least $1-\delta$.

Problem 2: Linear Dependence on ϵ in Regression

(1) Since U is an orthonormal basis for the column span of A, we can write y' = Ux for some $x \in \mathbb{R}^r$. Consequently, $||SUx' - Sb||_2 \le ||SAy' - Sb||_2$. We can also write x' = Ay for some $y \in \mathbb{R}^d$ since U and A have the same column span, so $||SAy' - Sb||_2 \le ||SUx' - Sb||_2$, and so $||SU'x - Sb||_2 = ||SAy' - Sb||_2$. A similar argument shows that $\min_x ||Ux - b||_2 = \min_y ||Ay - b||_2$. It now follows that if $||Ux' - b||_2 \le (1 + \epsilon) \min_x ||Ux - b||_2$, then

$$||Ay' - b||_2 = ||Ux' - b||_2 \le (1 + \epsilon) \min_{x} ||Ux - b||_2 = (1 + \epsilon) \min_{y} ||Ay - b||_2.$$

- (2) By the Pythagorean theorem, $||Ux'-b||_2^2 = ||UU^Tb-b||_2^2 + ||Ux'-UU^Tb||_2^2$, that is, the squared distance from b to a vector Ux' in the column span of U is the sum of the squared distance of b to its projection onto the column span of U and the squared distance of its projection to Ux'. We also know that $x^* = U^Tb$ by the normal equations for regression. Plugging this expression in for x^* completes the proof.
- (3) We have $x' = (SU)^- Sb$ and since S is an O(1)-approximate subspace embedding for the column span of U, which has linearly independent columns, we have that SU has linearly independent columns. So, $(SU)^- = ((SU)^T SU)^{-1} (SU)^T = (U^T S^T SU)^{-1} U^T S^T$ and $x' = (U^T S^T SU)^{-1} U^T S^T Sb$. We also have $x^* = U^T b$. So,

$$||U(x'-x^*)||_2^2 = O(1)||U(U^TS^TSU)^{-1}U^TS^TSb - UU^Tb||_2^2$$

= $O(1)||(U^TS^TSU)^{-1}U^TS^TSb - U^Tb||_2^2$.

Since S is a $(1 \pm 1/2)$ -subspace embedding with probability at least 9/10 by property (1), all singular values of $(U^T S^T S U)^{-1}$ are in the range [2/3, 2], and thus

$$\begin{split} \|(U^TS^TSU)^{-1}U^TS^TSb - U^Tb\|_2^2 &= O(1)\|(U^TS^TSU)((U^TS^TSU)^{-1}U^TS^TSb - U^Tb)\|_2^2 \\ &= O(1)\|U^TS^TSb - U^TS^TSUU^Tb\|_2^2 \\ &= O(1)\|U^TS^TS(b - Ux^*)\|_2^2. \end{split}$$

We now use the approximate matrix product property, which says with probability at least 9/10,

$$||U^T S^T S(b - Ux^*)||_2^2 = O(\epsilon/d) ||U^T||_F^2 \cdot ||Ux^* - b||_2^2 = O(\epsilon) ||Ux^* - b||_2^2,$$

which therefore holds with probability at least 1 - 1/10 - 1/10 = 4/5.

Problem 3: CountSketch Preserves Frobenius Norm We give an elementary argument based on Chebyshev's inequality. Let A_i denote the *i*-th column of A, for $i \in [d]$. For each of the d rows i of S, let $h(i) \in [r]$ denote the location of the single non-zero entry of S in the i-th row, and let $\sigma_i \in \{-1, 1\}$ be this entry. Then

$$\|AS\|_F^2 = \sum_{j \in [r]} \|\sum_{i \in [d] \text{ such that } h(i) = j} \sigma_i A_i\|_2^2 = \sum_{j \in [r]} \sum_{i, i' \in [d] \text{ such that } h(i) = j} \sigma_i \sigma_{i'} \langle A_i, A_i \rangle.$$

For any fixed h, taking expectation over σ we have that $\mathbf{E}[\sigma_i \sigma_{i'}] = 0$ unless i = i', in which case $\mathbf{E}[\sigma_i \sigma_{i'}] = 1$. It follows by linearity of expectation that

$$\mathbf{E}[\|AS\|_F^2] = \sum_{j \in [r] \ i \text{ such that } h(i)=j} \|A_i\|_2^2 = \|A\|_F^2.$$

We also have

$$\|AS\|_F^4 = \sum_{j_1, j_2 \in [r]} \sum_{i_1, i_2 \text{ such that } h(i_1) = h(i_2) = j_1} \sigma_{i_1} \sigma_{i_2} \langle A_{i_1}, A_{i_2} \rangle \sum_{i_3, i_4 \text{ such that } h(i_3) = h(i_4) = j_2} \sigma_{i_3} \sigma_{i_4} \langle A_{i_3}, i_4 \rangle.$$

Let $\delta(h(i_1) = j_1)$ be 1 if $h(i_1) = j_1$, and be 0 otherwise. Then we can write $\mathbf{E}[||AS||_F^4]$ as

$$\sum_{j_1, j_2 \in [r], i_1, i_2, i_3, i_4 \in [d]} \mathbf{E}[\delta(h(i_1) = j_1)\delta(h(i_2) = j_1)\delta(h(i_3) = j_2)\delta(h(i_4) = j_2)\sigma_{i_1}\sigma_{i_2}\sigma_{i_3}\sigma_{i_4}]$$

$$\langle A_{i_1}, A_{i_2} \rangle \langle A_{i_3}, A_{i_4} \rangle$$

Taking expectation only with respect to σ , to have a non-zero expectation, we must be able to partition $\{i_1, i_2, i_3, i_4\}$ into equal pairs. This drives the analysis behind the following cases.

Case: $j_1 \neq j_2$. Then the set $\{i_1, i_2\}$ must be disjoint from $\{i_3, i_4\}$ since we cannot have $h(i) = j_1$ and $h(i) = j_2$ for some $j_1 \neq j_2$. It follows that $i_1 = i_2$ and $i_3 = i_4$ and $i_1 \neq i_3$ are

the only terms which contribute to the expectation. It follows that the total contribution from terms for which $j_1 \neq j_2$ is

$$\sum_{j_1 \neq j_2 \in [r], i_1 \neq i_3 \in [d]} \frac{1}{r^2} ||A_{i_1}||_2^2 ||A_{i_3}||_2^2 \le ||A||_F^4 - \sum_i ||A_i||_2^4.$$

Case: $j_1 = j_2$, and $i_1 = i_2 = i_3 = i_4$. The total contribution from these terms is

$$\sum_{j_1 \in [r], i_1 \in [d]} \frac{1}{r} ||A_{i_1}||_2^4 = \sum_i ||A_i||_2^4.$$

Case: $j_1 = j_2$, and $i_1 = i_2$, $i_3 = i_4$, $i_1 \neq i_3$. The total contribution from these terms is

$$\sum_{j_1 \in [r], i_1 \neq i_3 \in [d]} \frac{1}{r^2} \|A_{i_1}\|_2^2 \|A_{i_3}\|_2^2 = O(1/r) \|A\|_F^4.$$

Case: $j_1 = j_2$, and $i_1 = i_3$, $i_2 = i_4$, $i_1 \neq i_2$. The total contribution from these terms is

$$\sum_{j_1 \in [r], i_1 \neq i_2 \in [d]} \frac{1}{r^2} \langle A_{i_1}, A_{i_2} \rangle^2 = O(1/r) ||A||_F^4.$$

Case: $j_1 = j_2$, and $i_1 = i_4$, $i_2 = i_3$, $i_1 \neq i_2$. This case is the same as the previous case, and contributes $O(1/r) ||A||_F^4$.

In total, we have $\mathbf{E}[\|AS\|_F^4] = \|A\|_F^4 + O(1/r)\|A\|_F^4$. Hence, $\mathbf{Var}[\|AS\|_F^2] = \mathbf{E}[\|AS\|_F^4] - \mathbf{E}^2[\|AS\|_F^2] = O(1/r)\|A\|_F^4$. By Chebyshev's inequality,

$$\Pr[|||AS||_F^2 - ||A||_F^2] \ge \epsilon ||A||_F^2] = \frac{O(1/r)||A||_F^4}{\epsilon^2 ||A||_F^4} \le \frac{1}{10},$$

for suitably chosen $r = \Theta(1/\epsilon^2)$.

Problem 4: Sketching Structured Regression Problems

(1) Consider a family \mathcal{F}_m of pairs (A,b) defined as follows. Let A^o be the $n\times d$ matrix with upper $d\times d$ matrix the $d\times d$ identity matrix, and $A^o_{i,j}=1/d$ for all $i\in\{d+1,d+2,\ldots,d+m/d-1\}$ and all $j\in\{1,2,\ldots,d\}$. For $i'\in\{d+1,\ldots,d+m/d-1\}$ and $j'\in\{1,2,\ldots,d\}$, let $A^{i',j'}=A^o+(3n-1/d)e_{i',j'}$, where $e_{i',j'}$ is the matrix with a single 1 in the (i',j')-th entry, and zeros in all remaining entries. Let $b_i=1$ for $i\in\{1,2,\ldots,d+m/d-1\}$, and $b_i=0$ for $i\in\{d+m/d,\ldots,n\}$. Define \mathcal{F}_m to be the union of (A^o,b) and $(A^{i',j'},b)$ for $i'\in\{d+1,\ldots,d+m/d-1\}$ and $j'\in\{1,2,\ldots,d\}$.

Notice that setting $x=1^d$ allows for $A^ox=b$, and so the regression cost is 0 in this case. Moreover, $x=1^d$ is the unique solution giving cost 0, and so must be returned by any regression algorithm achieving relative error if the algorithm succeeds. On the other hand for $x=1^d$, $\|A^{i',j'}x-b\|_2^2 \geq (3n-1)^2$ for any $i' \in \{d+1,\ldots,d+m/d-1\}$

and $j' \in \{1, 2, ..., d\}$, but setting $x = 0^d$ gives $||A^{i',j'}x - b||_2^2 = ||b||_2^2 \le n$, and so $x = 1^d$ does not provide a 2-approximate solution. It follows that the output of the regression problem can distinguish if the matrix A is A^o or if it is $A^{i',j'}$ for some i', j'.

We define two distributions μ and ν : μ just has support equal to (A^o, b) , and so a sample from μ always equals (A^o, b) . On the other hand, ν is the distribution obtained by choosing uniformly random and independent $i' \in \{d+1,\ldots,d+m/d-1\}$ and $j' \in \{1,2,\ldots,d\}$ and outputting $(A^{i',j'},b)$. By Yao's minimax principle, if there is a randomized algorithm which reads o(m) entries in expectation to solve the approximate regression problem with probability 3/4, then there is a deterministic algorithm which reads o(m) entries in expectation to solve the approximate regression problem given a random input from distribution $(\mu + \nu)/2$. By Markov's bound, this implies there exists a deterministic algorithm for solving the approximate regression problem with probability at least 2/3 from a random input from $(\mu + \nu)/2$, and which always reads o(m) entries. By the previous paragraph, this deterministic algorithm succeeds, with probability at least 2/3, in deciding if the input comes from μ or from ν . We assume such an algorithm exists and derive a contradiction.

We can assume the deterministic algorithm only queries entries in rows numbered $d+1,\ldots,d+m/d-1$, since all other rows have the same entries for all matrices in all pairs in \mathcal{F}_m . Further, the algorithm can only distinguish the two distributions if it reads an entry of value 3n, and when it does, it can correctly output that (A,b) was drawn from ν . Thus, we can identify the deterministic algorithm with a subset S of o(m) entries in these rows. However, the probability that a matrix $A^{i',j'}$ from a pair in ν satisfies $(i',j') \in S$ is |S|/m = o(1), and therefore with probability 1 - o(1) the algorithm only reads entries of value 1/d. Thus, the correctness probability of the algorithm can be at most (1+o(1))/2 < 2/3, a contradiction.

(2) Let S be an $r \times n$ CountSketch matrix, for $r = O(d/\epsilon^2)$. Let $h : [n] \to [r]$ and $\sigma : [n] \to \{-1,1\}$ be the associated hash and sign functions. We know that if we compute $S \cdot A$ and $S \cdot b$, then if $x' = (SA)^-Sb$, we have $||Ax' - b||_2 \le (1 + \epsilon) \min_{x \in \mathbb{R}^d} ||Ax - b||_2$. Also given SA, one can compute Sb in O(n) time and then solve for x' in $\operatorname{poly}(d/\epsilon)$ time. Thus, it suffices to show how to compute SA in $(n+d) \cdot \operatorname{poly}(\log n)$ time. For each $i \in [r]$, let A^i be the matrix formed by A by removing all rows A_j for which $h(j) \neq i$. Let σ^i be the vector formed from $(\sigma_1, \ldots, \sigma_n) \in \{-1, 1\}^n$ by removing all entries for which $h(j) \neq i$. Then, the i-th row of (SA), denoted $(SA)_i$, satisfies $(SA)_i = \sigma^i A^i$. Observe that A^i , being a subset of rows of A, is itself a Vandermonde matrix. Therefore, by the hint, one can compute $\sigma^i A^i$ in $(r_i + d) \cdot \operatorname{poly}(\log(r_i d))$ time, where r_i is the number of rows of A^i . It follows that SA can be computed in time

$$\sum_{i} (r_i + d) \cdot \operatorname{poly}(\log(r_i d)) \le (n + rd) \cdot \operatorname{poly}(\log(nd)) \le n \cdot \operatorname{poly}(\log n) + \operatorname{poly}(d(\log n) / \epsilon).$$