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Problem 1: High Probability Matrix Product and Embeddings (12 points)

(1) (6 points) We saw for several random families F of matrices S, given an m×n matrix
A and an n× p matrix B, if S is an n× r matrix with r = Θ(1/ε2) columns, then

Pr
S

[‖ASSTB − AB‖F ≤ ε‖A‖F‖B‖F ] ≥ 2/3,

that is, S satisfies the approximate matrix product property. As an application, S
provides a means of dimensionality reduction, that is, instead of storing A and B, we
can store AS and STB. For example, if we see the entries of A and B in a data stream,
it suffices to maintain AS and STB, which is very space-efficient.

One issue with the approach above is that the success probability is only 2/3. Suppose
now we independently sample S1, . . . , S`, ` = Θ(log(1/δ)), from F . Then with proba-
bility at least 1−δ, there exists an i∗ ∈ {1, 2, . . . , `} for which ‖A(Si∗)(Si∗)TB−AB‖F ≤
ε‖A‖F‖B‖F . Suppose we maintain A(Si)(Si)TB for each i ∈ {1, 2, . . . , `} in a stream.
Show how, given only A(S1)(S1)TB, . . . , A(S`)(S`)TB, we can output an i∗ such that
with probability at least 1− δ, ‖A(Si∗)(Si∗)TB − AB‖F ≤ ε‖A‖F‖B‖F .

(2) (6 points) A related problem is that of obtaining a high probability subspace embed-
ding. Recall from class that a k×n random matrix S is said to be a (1+ε)-approximate
subspace embedding if for any fixed n × d matrix A, n > d, we have that with prob-
ability at least 2/3 over our random choice of S (from some family F of matrices),
simultaneously for all vectors x ∈ Rd, it holds that ‖SAx‖2 = (1± ε)‖Ax‖2.
In some applications it is desirable to obtain a (1+ε)-approximate subspace embedding
succeeding with probability at least 1−δ, for a small δ > 0. While in some cases one can
achieve this by increasing the number of rows of S by a small amount, here we show
a general technique: given ` = Θ(log(1/δ)) sketches S1A, S2A, . . . , S`A, where each
Si is an independent (1 + ε)-approximate subspace embedding for A succeeding with
probability 2/3, show how to find an i∗ ∈ {1, 2, . . . , `} for which Si∗A is a (1 + Θ(ε))-
approximate subspace embedding for A with probability at least 1 − δ. You may
assume, for simplicity, that rank(A) = d. The high level solution is similar to the
previous part for approximate matrix multiplication.



Problem 2: Linear Dependence on ε in Regression (13 points) In class we saw an ap-
plication of subspace embeddings to overconstrained least squares regression: minx∈Rd ‖Ax−
b‖2, where we chose a random matrix S, computed SA and Sb, and returned the solution
x′ ∈ Rd to minx∈Rd ‖SAx− Sb‖2. We showed if S is a subspace embedding for the (d + 1)-
dimensional space [A, b], given here as the column span of an n × (d + 1) matrix, then x′

satisfies ‖Ax′− b‖2 ≤ (1+ ε) minx∈Rd ‖Ax− b‖2 with probability at least 2/3. We saw several
instantiations of S, from Gaussian, to Subsampled Randomized Hadamard Transform, to
CountSketch matrices. Our arguments each required S to have at least d/ε2 rows. Here we
show that S can have only O(d/ε) rows.

(1) (1 point) Let U ∈ Rn×r be an orthonormal basis for the column span of A, where r =
rank(A). Show if x′ = argminx∈Rr‖SUx−Sb‖2 satisfies ‖Ux′−b‖2 ≤ (1+ε) minx ‖Ux−
b‖2, then y′ = argminy∈Rd‖SAy − Sb‖2 satisfies ‖Ay′ − b‖2 ≤ (1 + ε) miny ‖Ay − b‖2.

(2) (2 point) We will thus focus on the problem of showing that x′ = argminx∈Rr‖SUx−
Sb‖2 is such that ‖Ux′ − b‖2 ≤ (1 + ε) minx ‖Ux− b‖2 for an S with O(d/ε) rows. Let
x∗ = argminx‖Ux− b‖2. Argue that ‖Ux′ − b‖22 = ‖Ux∗ − b‖22 + ‖U(x′ − x∗)‖22.

(3) (10 points) Show that if S is a k × n matrix of i.i.d. zero-mean Gaussian random
variables with variance 1/k, where k = O(d/ε), then ‖U(x′ − x∗)‖22 = O(ε)‖Ux∗ − b‖22.
You will need to use that (1) S is a (1±1/2)-approximate subspace embedding for any
fixed d-dimensional subspace (e.g., the column space of a given matrix with d columns)
and (2) S satisfies approximate matrix product. You will also need to use the particular
form of x′ and x∗, namely, x′ = (SU)−Sb and x∗ = UT b, and it might be helpful to use
that for a matrix C with linearly independent columns, C− = (CTC)−1CT .

Problem 3: CountSketch Preserves Frobenius Norm (10 points) Let r = O(1/ε2).
Show that for any fixed n× d matrix A, if S is a d× r CountSketch matrix (in this case S
has a single, uniformly random position which is non-zero in each row, and that position is 1
with probability 1/2 and −1 with probability 1/2), then Pr[‖AS‖2F = (1± ε)‖A‖2F ] ≥ 9/10.

Problem 4: Sketching Structured Regression Problems (15 points) We saw that if
x′ = argminx‖SAx−Sb‖2 is the solution to a sketched regression problem for a CountSketch
matrix S which has O(d2/ε2) rows, then with probability at least 2/3 we have ‖Ax′ − b‖2 ≤
(1 + ε) minx ‖Ax − b‖2. Note that SA and Sb can be computed in O(nnz(A) + n) time,
and assuming each row of A contains a non-zero entry (otherwise we can throw away some
rows of A and corresponding entries of b), this leads to an overall nnz(A) + poly(d/ε) time
algorithm for regression.

(1) (7 points) We say that a randomized algorithm has property P for a family F of pairs
(A, b), where A ∈ Rn×d and b ∈ Rn×1, if for every (A, b) ∈ F , the algorithm succeeds
in outputting an x′ ∈ Rd for which ‖Ax′ − b‖2 ≤ 2 minx ‖Ax − b‖2 with probability
at least 3/4, over the algorithm’s random coin tosses. In this problem, assume for
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simplicity, that n ≥ 2d. Argue that for every possible value of m, n ≤ m ≤ nd/2, there
exists a family Fm of pairs (A, b), where nnz(A) = m for every (A, b) ∈ Fm, such that
any algorithm which has property P for Fm reads Ω(m) entries of A in expectation for
some pair (A, b) ∈ Fm. You can also assume for simplicity, that d divides m. Here the
expectation is taken over the algorithm’s random coin tosses. Note that it is important
to be formal in proving a lower bound. In recitation we will go over Yao’s minimax
principle which is one way of formalizing this. If you cannot attend the recitation, the
slides for it will also be posted online, or also feel free to come to office hours to ask
for help.

(2) (8 points) Now we consider specific structured matrices A for which one can solve
regression in time faster than nnz(A). Let A be the n×d Vandermonde matrix, n ≥ d,
for which Ai,j = ij−1, and let b be an arbitrary vector. Show how to obtain an x′ ∈ Rd

in time n · poly(log n) + poly(d(log n)/ε) for which ‖Ax′− b‖2 ≤ (1 + ε) minx ‖Ax− b‖2
with probability at least 2/3. Notice that the running time of this algorithm is sublinear
in nnz(A). You can use the fact that for an r × s Vandermonde matrix V , and an r-
dimensional vector x, one can compute xT ·V deterministically in (r+s) ·poly(log(rs))
time.
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