Outline

Quick recap of #,-regression, and how to speed it up
Introduction to the Streaming Model

Estimating Norms in the Streaming Model

Heavy Hitters in a Stream

Estimating Number of Non-Zero Entries (¢)

Heavy Hitter Guarantees

|, — guarantee
output a set containing all items j for which |x;| > ¢|xI;
the set should not contain any j with [x| < (¢-€) |x]4

|, — guarantee
output a set containing all items j for which x,2 > ¢|x]5
the set should not contain any j with sz < (p—9)|x|3

|, — guarantee can be much stronger than the |, — guarantee
Suppose x = (vVn, 1,1, 1, ..., 1)
Item 1 is an |,-heavy hitter for constant @, €, but not an |,-heavy hitter
If |%;| = dlxl1, then x? = ¢p2 x5 = p?[xI5

Heavy Hitter Intuition

Suppose you are promised at the end of the stream, x; = n, and x; € {0,1} for
je{1,2,..,n}withj #i

How would you find the identity i?

Foreachjin {1, 2,3, ...,log n}, let A; c [n] be the set of indices with j-th bit in
their binary representation equal to 0, and B; be the set with j-th bit equal to 1

Compute a; = ZieA]. x; and b; = ZiEBj x; foreachjin {1, 2, ..., log n}

Read off the identity of item i

Heavy Hitter Intuition Continued

Suppose you are promised at the end of the stream, x; = 100/nlog(n), and x; € {0,1} for j €
{1,2,...,n} withj # i

How would you find the identity i?

Foreachjin {1, 2,3, ..., log n}, let A; c [n] be the set of indices with j-th bit in their binary
representation equal to 0, and B; be the set with j-th bit equal to 1

Compute a; = ZieA]_ oj - Xj and by = Ziij o; - x; foreachjin {1, 2, ..., log n}

Read off the identity of item i?

Additive Chernoff bound implies magnitude of “noise” in a count is at most ,/n log(n) w.h.p.

Remove assumptions: (1) x; = 100/nlog(n) and (2) and x; € {0,1} forj € {1, 2, ...,n} withj # i

CountSketch achieves the |,—guarantee

* Assign each coordinate i a random sign o; € {-1,1}

* Randomly partition coordinates into B buckets, maintain ¢, = .., _; X;* 0j in the
j-th bucket

X1 | X2 | X3 |Xg |X5 |Xg |X7 |Xg |Xg|Xig

« Estimate x; as o; - Chi)

Why Does CountSketch Work?

* E[GiCh(i)] = E[o; i’:h()=h(i") Oy Xir] = Xj

» Suppose we independently repeat this hashing scheme O(log n) times
* Output the median of the estimates across the log n repetitions

* “Noise” in a bucket is 6 * X h(iry=h(i) Oir * Xis

* What is the variance of the noise?

2
1x|3
° E [(0-1 . i’-'/—'i h(l’)=h(1) Gi, . Xi,)] < ?2

* So with constant probability, the noise in a bucket is O(| Xl2

) in magnitude
 Since the log n repetitions are independent, this ensures that our estimate
oich(i) Will equal x; + O(| |2) with probability 1-1/poly(n)

* Hence, we approximate every x; simultaneously up to additive error O(| Xl2

Tail Guarantee

||2

CountSketch approximates every x; simultaneously up to additive error O(

But what if x4 is a super large poly(n),and X, = nandx; = ... =x, = 1?

We get a pretty bad approximation to x,

Tall Guarantee CountSketch approximates every x; simultaneously up to additive error

B
O(\/14 %), where X_g 4 is x after zero-ing out its top B/4 coordinates in magnitude

Proof: with probability at least 3 /4, in each repetition the top B/4

coordinates of x in magnitude do not land in the same hash bucket as x;
* Do we need a lot of independence for this?

What happens if x is B/4-sparse?

Why Care About the £;-Guarantee?

* |, —guarantee
e output a set containing all items j for which |xj| > Pplx|;
* the set should not contain any j with |x| < ($-€) [x|4

* |, —guarantee
 output a set containing all items j for WhICh X;? = c|)|x|2
* the set should not contain any j with x (cl) —e)|x|3

* |, —guarantee implies the |, — guarantee
* So why care about the |, — guarantee?

A nice thing about the l;-guarantee is that it can be solved deterministically!

Deterministic £, Heavy Hitters

* Ans x n matrix S is e-incoherent if
e forall columnsS;, |Si|, =1
* for all pairs of columns §; and §;, |(Si, Sj)| <€
 entries can be specified with O(log n) bits of space

e Compute S - X in a stream using O(s log n) bits of space

* Estimate £; = S.'Sx
* X = Zj=1,...,n<Sir Sj)Xj = |Si|%Xi + mi?Xl(Si, Sj>||X|1 = x; * €[x|y

* Can figure out which |x;| = ¢|x|;and which |x;| < (¢ — €)[x|;

 But do e-incoherent matrices exist?

e-lncoherent Matrices

Consider a prime q = 0((logn)/e€). Letd =€ - q =0(log n)

* Consider n distinct non-zero polynomials p4, ..., py, €ach of degree less than d.
e q¢—1 >n

* Associate p; with i-th column of S

* Lets= q2 and group the rows of S into g groups of size g

* In j-th group, the i-th column has a single non-zero on the p;(j)-th entry

* pigj)-th entry is equal to 1/q*/2

* Each column S; has |S;], =1

* §; and S; each have the same non-zero in the k-th group iff p; (k) = p;(k)

* Number of such groups k is at most d < €q, so |(Si, Sj)| <€

How to Find the Top k Heavy Hitters Quickly

e There are 2! nodes in i-th level of tree
e Start at the level with 2k nodes

* Each node corresponds to a subset of [n] of
size n/2' with the same i-bit prefix

* Ini-th level, for each i, hash to O(k) buckets repeat
O(log n) times. Like CountSketch, but in each bucket
we run an approximation algorithm to the 2-norm

* In top level our universe has only 2k nodes, so we find
top k just by computing estimate for all of them

Main idea: in next level, we only need to consider the
left and right child of each of the k nodes we found at
the previous level. So only 2k < n nodes to consider.

Full Binary Tree

Outline

Quick recap of ;-regression, and how to speed it up

Introduction to the Streaming Model

Estimating Norms in the Streaming Model

Heavy Hitters in a Stream

Estimating Number of Non-Zero Entries (€;)

Estimating the Number of Non-Zero Entries
* |x|, = |{i such that x; # 0}

* How can we output a number Z with (1 — €)Z < [x], < (1 + €)Z with prob. 9/107?
« Want O((logn)/€?) bits of space

Suppose x|, = O(eiz). What can we do in this case?

: : . 1
Use our algorithm for recovering a k-sparse vector from last time, k = O (6—2)

* What is another way?

. 1
But what if x|, > 6—2?

Estimating the Number of Non-Zero Entries

Suppose we somehow had an estimate Z with Z < |x|, < 2Z, what could we do?

Independently sample each coordinate i with probability p = 100/(Z €?)

Let Y; be an indicator random variable if coordinate i is sampled
Let y be the vector restricted to coordinates i for which Y; = 1

100
* [|Y|] leuch that x;#0 E[] — pleO
200
* Varllylo] = i such that x;#0 Varly;] < E_z But we don’t
. _ 100] _ Var[lylole® _ 1 know Z...
Prlylo — Ellylo]] > =] < 2l < =
* Use sparse recovery or CountSketch to compute |y|, exactly

* Qutput %

Estimating the Number of Non-Zero Entries

e Guess Z in powers of 2
* Since 0 < [x|o < n, there are O(logn) guesses
e The i-th guess Z = 2! corresponds to sampling each coordinate with

probability p = min(1, 21i0€02)

* Sample the coordinates as nested subsets [n] = S5 2 §; 2 5, 2 -+ §j4

* Run previous algorithm for each guess
* One of our guesses Z satisfies Z < [x|, < 2Z and we should use that guess

e But how do we know which one?

Estimating the Number of Non-Zero Entries

3200
Ez

e Use the largest guess Z = 2! for which % < lylo <

. |f% < E[lylo] < 1220, then % < |ylp < BESO with probability at least 49/50
. If% < E[lylo] < zg’ then |y|, < % with probability at least 49/50

* So with probability 98/100, we choose an i for which 2% < E[lylo] < 1000

62
* There are only 4 such indices i, and all 4 of them satisfy |y|y, = (1 + €)E|[|y|,]
simultaneously with probability 1-4/50. So doesn’t matter which i we choose

 Overall, our success probability is 1-2/50-4/50 > 4/5

What is Our Overall Space Complexity?

logn

* |f we use our k-sparse recovery algorithm fork = 0O (Elz), then it takes O(=) bits of space in
2
lof n) total bits of space ignoring random bits

each of log n levels, so O(—;

* How much randomness do we need?

e Pairwise independence is enough for Chebyshev’s inequality

* Implement nested sampling by choosing a hash function h: [n] — [n],
checking if first i bits of h(j) =0

* O(log n) bits of space for the randomness

(log n (log(%)+log logn)

62

 Canimproveto O) bits. How?

 Just need to know number of non-zero counters, so reduce counters from log n bits to
O(log (%) + loglogn) bits

Reducing Counter Size

: 1
* In sampling levels that we care about, we have O (6—2) counters, each of
O(log n) bits

logn

e At most O () prime numbers dividing any of these counters

e2

lognloglog)
2

* Choose arandom primeqg=0 (. Unlikely that g divides any

counters

(loglogn +log(%))

e Just maintain our sparse recovery structure mod g, so O (=

bits per each of O(log n) sparse recovery instances

