CS 15-851: Algorithms for Big Data Spring 2025

Lecture 11 Part 2 — April 10, 2025
Prof. David Woodruff Scribe: Nairit Sarkar

1 Recent Efficiency Improvements to Transformers

1.1 Autoregressive Language Model

An Autoregressive Language Model (ALM) takes in a sequence of tokens and produces a new token.
We can view tokens as words and an example of an ALM is ChatGPT.

The general setup is this: we have an input prompt (sequence of tokens). Then, the input prompt
can be efficiently converted into a vector embedding by converting each token into a d-dimensional
vector. So, if we have n tokens in the input prompt and the vector embedding has dimension
128, our vector embedding is a n x 128-dimensional matrix. We treat the dimension of the vector
embedding (128 in this case) as a constant. Then, the vector embedding is fed into a transformer
which returns an output embedding. Finally, the output embedding is converted back into tokens
to generate an output.

A transformer is a very powerful component in the autoregressive model with applications in audio,
video, and text processing. In a transformer, we have four layers: a normalization layer, the
self-attention layer, another normalization layer, and a feedforward layer. We restrict our focus to
the self-attention layer since all other layers take linear time.

Given an input embedding X € R"*¢ the self-attention layer works as follows: we store and learn
We WK WV e R4 Then we let

Q=X W9 eRr™?
K=X -WKermd
V=X -W"eRr
A=exp(QK") e RV

n
Dii=Y_ Ay
=1

where D is diagonal and return D~ AV € R"*?, We define Att(Q, K,V) = D71 AV = softmax(QK ")V.
The softmax operation is done by rows: for a given row r = [r1,72,...,7,], we have

exp(r1) exp(r2) exp(ry)
doexp(r;) Yexp(r;)’ 7 Y exp(r;)

softmax(r) = {

Intuitively, the rows of X are tokens and X; - W€ is the query for token X; (where X; is a row of
matrix X). Then, the softmax operation on row i generates a probability distribution for the keys

most likely to attend to query i. We multiply this matrix by WV to update the embeddings of each
token.

Unfortunately, computing Att(Q, K,V) = D~'AV requires O(n?) time causing the self-attention
layer to be the bottleneck when n is large. Given how powerful transformers are, we aim to optimize
this computation.

Specifically, we can compute @, K,V in O(n) time (since we view d as a constant). However, we
need O(n?) time to compute the following:

e A=exp(QKT),
e D when given A, and
e D 'AV when given A, D, V.

Furthermore, we need O(n?) time to compute a high quality O(1/poly(n))-approximation of
Att(Q, K, V):

Theorem 1 (Alman & Song 23’). If d € O(logn), B = ©(y/logn), and Q, K,V € [-B, B]"*? then
assuming the Strong Exponential Time Hypothesis, it is impossible to approzimate Att(Q,K,V') up
to 1/poly(n) additive error in subquadratic time O(n?~ V).

This is not satisfactory in practice so we must make some assumptions. One possible way is to
assume that the large entries are near the diagonal. However, this is a strong assumption.

Another approach is to use low-rank approximation. Suppose we had some algorithm that could
take K, @ and produce LR ~ softmax(QK") where L € n x k, R € k x n with k << n. Then, we
could compute softmax(QK "YW ~ LRV in nkd time since each multiplication takes nkd time. The
challenge here is computing L, R efficiently.

1.2 Hyperattention
We split the computation of Att(Q, K, V) into two steps:

e Approximate

Dii=Y Aij=> exp({a,kj))

J€[n] JE€M]

e Approximate AV.

Let’s start with the second. One approach is sketching: AV ~ ASSTV where S € R™*" is a
sketching matrix. However, A is a dense matrix so computing AS requires O(n?) time. We can
fix this by sampling. Specifically, we sample row ¢ with probability oc H%HS This is lower-variance
than random sampling and gives m = srank(softmax(QK ") - d.

Now let’s address the first. One general approach we can use is splitting up the sum D; ; into “heavy”
and “light” elements, explicitly computing the heavy sum, and estimating the light sum. This does
better than naive random sampling since most of the variance will be in the heavy elements and we
compute that exactly.

Theorem 2 (Informal). If the mazimum squared column norm in softmax(QK ") is ﬁ and the

ratio of maz and min row sums in A = exp(QK ") after removing heavy elements is n°1) then Att
can be computed in O(dn'*t°M) time with

Hsoftmax(QKT)V - AttHOp <e Hsoftmaw(QKT)Hop V1,

The column norm bound is non-trivial - it allows for entries as large as m in softmax(QK).
Estimating the contribution of light elements is non-trivial as well.

Let’s see why the column norm bound is needed. If exp(QK ") has the first column all n and at
most two n’s in any row and all other entries 1, i.e.

n 1 n 1 1

T n 1 1 1 ... n
exp(QK ') = o o

nooo o

n 1 1 n ... 1

then note that D;; = 2n or 3n so the norm of the first column is at least (1/3)% - n € O(n). So the
column norm bound condition does not hold.

Then, if V. = [1,0,...,0] (i.e. first unit vector),
2

2
‘softmax(QKT)Hop ~ n, [V|? = 1, and

HsoftmaX(QKT)V — Att

< n/10.
op

This has hardness n2°") and bounded column norms avoid hard instances like these.

1.2.1 Finding Heavy Elements in Practice

One practical approach to finding heavy elements is using a permutation algorithm to bring the
heavy elements near the main diagonal. Note that if A;; = (¢;, k;) is large, ¢; and k; are directionally
similar in R®. The Hamming sorted LSH provides a hash function H : RY — [B] such that
Pry[H(q) = H(k)] is roughly proportional to (g, k). Furthermore, the buckets are ordered in such
a way that geometrically adjacent buckets have consecutive buckets [23’, Han, Jayaram, Karbasi,
Mirrokni, Woodruff, Zandieh].

Specifically, SimHash normalizes the points onto the hypersphere, and if we have 2V buckets, we can
create a binary representation of a point by choosing v hyperplanes and assigning the ith bit to be
1 or 0 depending on whether the point is above or below the ith hyperplane. SortLSH then creates
buckets such that close bit strings are in the same bucket. Finally, we can use our hash to create a
permutation matrix that brings heavy entries near the diagonal.

1.2.2 Causal Masking

The method described above supports causal masking: output embeddings only depend on past
input embeddings so the causal masked version of this problem sets all entries above the main
diagonal of QKT to zero (before applying softmax). We can use a divide and conquer algorithm to
find heavy elements in the causal masking variant: the top right submatrix has no heavy elements,

we can use the above method on the bottom left submatrix and call the recursive function on
the other two submatrices. This relies on the assumption that submatrices will still satisfy our
assumptions.

1.3 PolySketchFormer

Let sim(q, k) > 0 be an arbitrary function that measures similarity between query ¢ and key k.
Then, the attention mechanism with respect to sim is

Z sim(g;j, ks) v
i< sim(qj, kir) ‘

1<j

Suppose ¢ is a function such that sim(q, k) = (¢(q), ¢(k)). If Q' = ¢(Q) and K’ = ¢(K), the output
is

D7 LT(Q - (KYT) -V,

Here, LT is the lower triangular part for the causal setting. This gives a linear time algorithm for
computing LT (A - BT) - C since runtime depends on output dimension of ¢. Unfortunately, there
are no finite dimensional feature maps ¢ for softmax.

Performer (Choromanski et al.,) uses a finite-dimensional map ¢ to approximate the exponential.
However, vectors with large norms require a larger output dimension.

Alternatively, we may consider arbitrary ¢ instead of first defining the sim function. We can consider
¢(x) = elu(xz) + 1 (Katharopoulos et al. ’20) or ¢(z) = relu(z) but these result in worse model
quality compared to softmax.

1.3.1 Polynomial Feature Map

Consider sim(q, k) = (q,k)? where p > 2 is an even integer. We can achieve this by letting
p:x—a® Ifxc R, %P ¢ R" and (:c®p)l-1,i2’._',ip =i ... T, Then,

(6(q), &(k)) = (¢°F, k*F) = (¢, k)"

as desired.

This allows linear attention using polynomials: we can compute Q®P and K®? in order to compute
T - (K*)1)-V
in O(nhP*1) time. Typically, h = 64,128,256 so this method is too expensive even for p = 4.

We can use sketching to approximate. Since Q®P, K®P have a large number of columns, we wish
to compute matrices Q’, K’ such that Q¥P(K®P)T ~ Q- (K')T. Ahle et al. "20 give a fast sketch
called TensorSketch.

Unfortunately, this does not converge since the entries of Q®P(K®P)T are nonnegative whereas
Q- (K')T may have negative entries. The following theorem addresses this issue:

Theorem 3. If Q', K' are sketches for degree p/2 then Q'®%, K'®? is a sketch for degree p.

Some other optimizations we may make:

o TensorSketch is a random sketch - we can instead treat the sketch as a learnable parameter
o When computing LT(A- BT) - C use block multiplication and cumulative sums

e Compute diagonal blocks exactly as such blocks are sensitive to approximation

	Recent Efficiency Improvements to Transformers
	Autoregressive Language Model
	Hyperattention
	Finding Heavy Elements in Practice
	Causal Masking

	PolySketchFormer
	Polynomial Feature Map

