
CS 15-851: Algorithms for Big Data Spring 2025

Lecture 10 — 3/27/2024
Prof. David Woodruff Scribe: Aksara Bayyapu

Randomized 1-Way Communication Complexity

In this section, we study the one-way communication complexity for the Index problem. We consider
the following scenario:

• Alice holds a binary string x ∈ {0, 1}n.

• Alice sends a single message M to Bob.

• Bob has an index j ∈ [n] and must determine xj .

The protocol is randomized, meaning Alice and Bob may use randomness when constructing and
interpreting M . We require that for every x and every j, Bob outputs the correct value of xj with
probability at least 2

3 over the randomness of the protocol:

∀x, ∀j, P
randomness

[
Bob correctly identifies xj

]
≥ 2

3 .

Our goal is to prove that any protocol (i.e., any strategy for choosing and interpreting M) that
achieves this success criterion must send at least Ω(n) bits of information from Alice to Bob.

1-Way Communication Complexity of Index

We consider the Index problem in a one-way communication setting:

• Let X ∈ {0, 1}n be chosen uniformly at random.

• Alice observes X and sends a single message M (of ℓ bits) to Bob.

• Bob has an index j ∈ [n] and must predict the bit Xj .

We require that for all j, Bob’s prediction X ′
j satisfies

P
[
X ′

j = Xj
]

≥ 2
3 ,

where the probability is over the randomness of X (and any randomness in the protocol).

To understand how much information M reveals about Xj , we use Fano’s Inequality. Since
X → M → X ′ is a Markov chain (i.e., Xj and X ′

j become conditionally independent given M),
Fano’s Inequality implies:

H(Xj | M) ≤ H(Pe) + Pe log2
(
|Xj |−1

)
,

1



where Pe = P[X ′
j ̸= Xj ] is the error probability. Given P[X ′

j = Xj ] ≥ 2
3 , we have Pe ≤ 1

3 . In the
binary case (|Xj | = 2), this simplifies to

H(Xj | M) ≤ H
(

1
3

)
+ 1

3 log2(2 − 1) = H
(

1
3

)
.

Hence each bit Xj is not completely hidden once M is known; M must reveal some information
about Xj .

We now lower-bound the mutual information I(X; M). Since X is n bits chosen uniformly and the
bits are independent:

I(X; M) =
n∑

i=1
I

(
Xi; M

∣∣ X<i
)

= n −
n∑

i=1
H

(
Xi

∣∣ M, X<i
)
.

Because conditioning on more variables can only reduce entropy,

H
(
Xi

∣∣ M, X<i
)

≤ H(Xi | M),

we get

I(X; M) ≥ n −
n∑

i=1
H(Xi | M) ≥ n − n H

(
1
3

)
= Ω(n).

Since M is an ℓ-bit message, we know H(M) ≤ ℓ. Moreover, by the data-processing inequality,

I(X; M) ≤ H(M).

Thus,
ℓ ≥ H(M) ≥ I(X; M) = Ω(n).

Therefore, any one-way protocol that correctly identifies Xj with probability at least 2/3 for all j
must use messages of length at least Ω(n) bits.

Typical Communication Reduction

A common strategy for proving lower bounds in computational problems is to reduce the problem
in question to a known problem with established complexity bounds, such as the Index problem.
The following figure illustrates this framework in the context of a streaming algorithm.

1. Alice runs a streaming algorithm on s(a): She processes her stream s(a) using some algorithm
Alg, then sends the state of Alg(s(a)) to Bob.

2. Bob computes Alg(s(a), s(b)): After receiving the state from Alice, Bob processes his own
stream s(b) together with the state to produce an output.

3. Space complexity versus communication complexity: If Bob successfully solves a function
g(a, b) with this setup, it implies that the space used by Alg must be at least as large as
the one-way communication complexity of g. In other words, a lower bound on the one-way
communication complexity of g transfers to a lower bound on the space complexity of the
streaming algorithm.

2



Example: Distinct Elements

We have a sequence of elements a1, a2, . . . , am ∈ [n] and wish to compute the total number of distinct
elements in this sequence. We claim that any algorithm (or protocol) achieving this requires Ω(n)
bits of communication in the one-way setting.

Recall the Index problem:

• Alice holds a binary string x ∈ {0, 1}n.

• Bob holds an index i ∈ [n].

• Bob’s goal is to determine whether xi = 1.

We reduce the Distinct Elements problem to Index as follows:

1. Let s(a) be the stream of indices {ij} such that xij = 1 in x. That is, s(a) only lists positions
where x has a 1-bit.

2. Let s(b) = i, the single index held by Bob.

3. Suppose we have a streaming algorithm Alg that computes the number of distinct elements.
We feed s(a) into Alg, producing a (possibly) compressed state Alg(s(a)).

4. Then we feed s(b) to Alg as well, obtaining Alg(s(a), s(b)).

Define

xi =
{

0, if Alg(s(a), s(b)) = Alg(s(a)) + 1,

1, otherwise.

• If xi = 1, then the index i was already included in s(a), so when we add s(b) = i, the total
count of distinct elements does not increase. Hence, Alg(s(a), s(b)) = Alg(s(a)).

• If xi = 0, then i was not included in s(a), so adding i to the stream increases the count of
distinct elements by 1. Hence, Alg(s(a), s(b)) = Alg(s(a)) + 1.

By correctly detecting whether Alg(s(a), s(b)) differs from Alg(s(a)), Bob effectively learns xi. This
shows that a protocol solving the Distinct Elements problem in one pass (with a one-way message)
can solve the Index problem. Consequently, the space (or communication) complexity of Alg is at
least the one-way communication complexity of Index, namely Ω(n) bits.

Strengthening Index: Augmented Indexing

In the Augmented Index problem:

• Alice holds a binary string x ∈ {0, 1}n.

• Bob has an index i ∈ [n] and the first i − 1 bits of x, namely x1, x2, . . . , xi−1.

3



• Bob’s goal remains the same as in the standard Index problem: to determine xi with probability
at least 1 − δ (or some constant success probability > 1

2).

Even with the extra information x1, . . . , xi−1 available to Bob, the one-way communication com-
plexity of the Augmented Index problem remains Ω(n). Concretely, one can show

CCδ(Augmented Index) ≥ n
(
1 − H(δ)

)
,

where H(δ) = −δ log2(δ) − (1 − δ) log2(1 − δ) is the binary entropy function.

Let M be the (randomized) message Alice sends to Bob. We use the chain rule for mutual
information:

I(X; M) =
n∑

i=1
I

(
Xi; M

∣∣ X<i
)
.

Since X is uniform in {0, 1}n and the bits are independent,

I(Xi; M | X<i) = H(Xi | X<i) − H(Xi | M, X<i) = 1 − H
(
Xi | M, X<i

)
.

Hence,

I(X; M) =
n∑

i=1

[
1 − H

(
Xi | M, X<i

)]
= n −

n∑
i=1

H
(
Xi | M, X<i

)
.

Bob’s task is to predict Xi given M and X<i. If Bob can guess Xi correctly with probability at
least 1 − δ, then by Fano’s Inequality,

H
(
Xi | M, X<i

)
≤ H(δ) + δ log2

(
|Xi| − 1

)
.

Since Xi is a single bit (|Xi| = 2), this simplifies to

H
(
Xi | M, X<i

)
≤ H(δ).

Combining the above,
n∑

i=1
H

(
Xi | M, X<i

)
≤

n∑
i=1

H(δ) = n H(δ).

Thus,
I(X; M) ≥ n − n H(δ) = n

(
1 − H(δ)

)
.

Since I(X; M) ≤ H(M) ≤ |M | (the length of the message in bits), we conclude

|M | ≥ n
(
1 − H(δ)

)
.

Hence,
CCδ(Augmented Index) ≥ n

(
1 − H(δ)

)
,

establishing that even with partial knowledge of x, Bob still needs an Ω(n)-bit message from Alice
to reliably determine the unknown bit xi.

4



Log n Bit Lower Bound for Estimating Norms

We consider a scenario where Alice has input x ∈ {0, 1}log(n) in the Augmented Index framework.
The goal is to show that estimating a norm (e.g., ∥ · ∥p for p ≥ 1) within a factor of 2 requires at
least Ω(log n) bits of communication, despite the fact that naively storing the counter (or norm)
might take only O(log(log(n))) bits.

Alice constructs a vector v ∈ Rd (for some dimension d) that has a single non-zero coordinate.
Specifically, if x = (x1, x2, . . . , xlog(n)), she sets

v =
(log(n)∑

j=1
10jxj , 0, 0, . . . , 0

)
.

Alice processes v with a streaming (or data-structure) algorithm Alg and sends the resulting state
Alg(v) to Bob.

Bob has:

• An index i ∈ [log(n)].

• The subsequent bits xi+1, xi+2, . . . , xlog(n) (as in an Augmented Index setting).

• He constructs a second vector w whose single non-zero coordinate is
∑

j>i 10j .

Bob then subtracts w from v by feeding −w into the algorithm’s state:

Alg(v − w) = Alg
(∑

j≤i

10jxj

)
.

The outcome of Alg(v − w) gives Bob enough information to guess xi:

xi =
{

1, if Alg(v − w) ≥ 10i

2 ,

0, otherwise.

If xi = 1, then v − w =
∑

j≤i 10jxj is at least 10i, so any 2-approximation to ∥v − w∥p must be
≥ 10i

2 . If xi = 0, then v − w is at most
∑

j<i 10j < 2 · 10i−1, so a 2-approximation stays below 10i

2 .
Hence, Bob can distinguish between xi = 0 and xi = 1 via the approximate norm.

1
ε2 Bit Lower Bound for Norm Estimation

The Gap Hamming Distance problem is defined over two strings x, y ∈ {0, 1}n. We are guaranteed
that

∆(x, y) =
n∑

k=1
1{xk ̸= yk}

is either > n
2 + 2εn or < n

2 + εn, and the task is to decide which of these two cases holds.

It is known that solving the Gap Hamming problem in a one-way randomized communication model
requires Ω

( 1
ε2

)
bits of communication. Moreover, one can show that approximating certain norms

5



(e.g. ∥ · ∥p) on binary data streams reduces to the Gap Hamming problem, implying a similar lower
bound for norm estimation.

We illustrate how the Gap Hamming problem can be related to Index by a public-coin argument:

• Public Coins: Suppose we have a t × t random matrix rk
j (for rows k = 1, . . . , t and columns

j = 1, . . . , t). We view each row rk = (rk
1 , . . . , rk

t ) as a random bit vector.

• Alice’s Input: A bitstream x ∈ {0, 1}t (with t = O( 1
ε2 )).

• Bob’s Input: An index i ∈ {1, . . . , t} (or a set of bits b ∈ {0, 1}t derived from i).

We construct two new bit vectors a, b ∈ {0, 1}t as follows:

ak = Majority
{

rk
j : xj = 1

}
, bk = rk

i .

If xi = 0, the i-th column rk
i does not affect ak (since xi = 0 means the i-th column is not included

in the majority vote for ak). Thus, a and b are essentially uncorrelated along the i-th dimension.s If
xi = 1, then the i-th column does contribute to ak, creating correlation between a and b.

Denote ∆(a, b) =
∑t

k=1 1{ak ̸= bk}.

Case xi = 0: The i-th column is not part of a’s majority computation. For each k, ak equals the
majority of other columns where xj = 1, and bk = rk

i is an independent random bit. One can show
that in expectation, half of these bits disagree, giving

E
[
∆(a, b)

]
≈ t

2 .

Case xi = 1: Now the i-th column is included in a’s majority vote. Analyzing the probability that
bk = rk

i agrees with the majority bit of {rk
j : xj = 1} yields a difference on the order of Θ(εt) from

the t
2 baseline. Concretely,

E
[
∆(a, b)

]
≈ t

2 − Θ(εt) = t
2 − Θ

(
1
ε

)
.

Since t = Θ( 1
ε2 ), these two cases yield a noticeable gap in ∆(a, b) on the order of

√
t ≈ 1

ε . This gap
is sufficient to distinguish whether xi = 0 or xi = 1 by checking if ∆(a, b) is closer to t

2 or t
2 − Θ(

√
t).

Because distinguishing xi = 0 from xi = 1 (an Index-like task) can be embedded in deciding which
side of the gap ∆(a, b) falls on (a Gap Hamming problem), we see that solving this problem requires
Ω

( 1
ε2

)
bits of communication. Therefore, the same applies for the norm estimation problem.

6


