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Randomized 1-Way Communication Complexity

In this section, we study the one-way communication complexity for the Index problem. We consider
the following scenario:

o Alice holds a binary string x € {0,1}".
e Alice sends a single message M to Bob.

« Bob has an index j € [n] and must determine ;.

The protocol is randomized, meaning Alice and Bob may use randomness when constructing and
interpreting M. We require that for every x and every j, Bob outputs the correct value of x; with
probability at least % over the randomness of the protocol:

v, Vj, P [Bob correctly identifies x;] > 2

randomness 3

Our goal is to prove that any protocol (i.e., any strategy for choosing and interpreting M) that
achieves this success criterion must send at least {2(n) bits of information from Alice to Bob.

1-Way Communication Complexity of Index

We consider the Index problem in a one-way communication setting:

o Let X € {0,1}" be chosen uniformly at random.
o Alice observes X and sends a single message M (of ¢ bits) to Bob.

o Bob has an index j € [n] and must predict the bit X;.

We require that for all j, Bob’s prediction X ]’ satisfies

PIX; = X;] >

wIiN

)

where the probability is over the randomness of X (and any randomness in the protocol).

To understand how much information M reveals about Xj;, we use Fano’s Inequality. Since
X — M — X'is a Markov chain (i.e., X; and X7 become conditionally independent given M),
Fano’s Inequality implies:

H(X; | M) < H(P) + Pe logy(|X;[—1),



where P = P[X] # X] is the error probability. Given P[X} = X;] > 5, we have P < 1. In the
binary case (|X;| = 2), this simplifies to

H(X;| M) < H(}) + Ylogy(2—1) = H(}).
Hence each bit X; is not completely hidden once M is known; M must reveal some information

about X;.

We now lower-bound the mutual information I(X; M). Since X is n bits chosen uniformly and the
bits are independent:

I(X;M) = Y I(X M| X)) = n—> H(X;| M, X).
i=1 =1

Because conditioning on more variables can only reduce entropy,
H(X;| M, X)) < HX; | M),

we get

I(X; M) > n—zn:H(Xi]M) > n-nH(}) = Qn).
=1

Since M is an ¢-bit message, we know H (M) < £. Moreover, by the data-processing inequality,
I(X;M) < H(M).

Thus,
¢ > H(M) > I(X; M) = Q(n).

Therefore, any one-way protocol that correctly identifies X; with probability at least 2/3 for all j
must use messages of length at least 2(n) bits.

Typical Communication Reduction

A common strategy for proving lower bounds in computational problems is to reduce the problem
in question to a known problem with established complexity bounds, such as the Index problem.
The following figure illustrates this framework in the context of a streaming algorithm.

1. Alice runs a streaming algorithm on s(a): She processes her stream s(a) using some algorithm
Alg, then sends the state of Alg(s(a)) to Bob.

2. Bob computes Alg(s(a),s(b)): After receiving the state from Alice, Bob processes his own
stream s(b) together with the state to produce an output.

3. Space complexity versus communication complexity: If Bob successfully solves a function
g(a,b) with this setup, it implies that the space used by Alg must be at least as large as
the one-way communication complexity of g. In other words, a lower bound on the one-way
communication complexity of g transfers to a lower bound on the space complexity of the
streaming algorithm.



Example: Distinct Elements

We have a sequence of elements a1, ag, ..., a, € [n] and wish to compute the total number of distinct
elements in this sequence. We claim that any algorithm (or protocol) achieving this requires €(n)
bits of communication in the one-way setting.

Recall the Index problem:

o Alice holds a binary string x € {0, 1}".
« Bob holds an index i € [n].

e Bob’s goal is to determine whether x; = 1.
We reduce the Distinct Elements problem to Index as follows:

1. Let s(a) be the stream of indices {i;} such that z;; = 1 in 2. That is, s(a) only lists positions
where x has a 1-bit.

2. Let s(b) = i, the single index held by Bob.

3. Suppose we have a streaming algorithm Alg that computes the number of distinct elements.
We feed s(a) into Alg, producing a (possibly) compressed state Alg(s(a)).

4. Then we feed s(b) to Alg as well, obtaining Alg(s(a), s(b)).

Define
[0, Alg(s(a), s(0) = Alg(s(a)) + 1,
b 1, otherwise.

o If ; =1, then the index i was already included in s(a), so when we add s(b) = i, the total
count of distinct elements does not increase. Hence, Alg(s(a), s(b)) = Alg(s(a)).

o If z; = 0, then i was not included in s(a), so adding ¢ to the stream increases the count of
distinct elements by 1. Hence, Alg(s(a), s(b)) = Alg(s(a)) + 1.

By correctly detecting whether Alg(s(a), s(b)) differs from Alg(s(a)), Bob effectively learns x;. This
shows that a protocol solving the Distinct Elements problem in one pass (with a one-way message)

can solve the Index problem. Consequently, the space (or communication) complexity of Alg is at
least the one-way communication complexity of Index, namely Q(n) bits.

Strengthening Index: Augmented Indexing

In the Augmented Index problem:

o Alice holds a binary string « € {0, 1}".

o Bob has an index i € [n] and the first ¢ — 1 bits of z, namely =1, 2, ..., 2;_1.



e Bob’s goal remains the same as in the standard Index problem: to determine x; with probability
at least 1 — ¢ (or some constant success probability > %)

Even with the extra information x1,...,x;_1 available to Bob, the one-way communication com-
plexity of the Augmented Index problem remains ©(n). Concretely, one can show

CCs(Augmented Index) > n(1 — H(J)),

where H(d) = —dlogy(d) — (1 — 0) logy(1 — 6) is the binary entropy function.
Let M be the (randomized) message Alice sends to Bob. We use the chain rule for mutual
information: .
I(XM) = Y I(Xs M| Xg).
i=1

Since X is uniform in {0,1}" and the bits are independent,
I(Xi;M | X)) = HX; | Xey) — HX; | M, X)) = 1-H(X; | M, X).

Hence,
n

IXM) = Y[1— H(X; | M, X)| = n—zn:H(Xi | M, X_;).
i=1 =1

Bob’s task is to predict X; given M and X.;. If Bob can guess X; correctly with probability at
least 1 — §, then by Fano’s Inequality,

H(X; | M,X<;) < H(8)+ dlogy (|| — 1).
Since X; is a single bit (|| = 2), this simplifies to

H(X; | M, X)) < H(9).

Combining the above,
n n

S H(Xi | M, X)) < > H(§) = nH(S).

i=1 i=1
Thus,
I(X;M) > n—nH(5) = n(l—H(3)).

Since I(X; M) < H(M) < |M]| (the length of the message in bits), we conclude
M| > n(1— H()).

Hence,
CCs(Augmented Index) > n(1 — H(d)),

establishing that even with partial knowledge of x, Bob still needs an 2(n)-bit message from Alice
to reliably determine the unknown bit x;.



Log n Bit Lower Bound for Estimating Norms

We consider a scenario where Alice has input z € {0,1}°8(") in the Augmented Index framework.
The goal is to show that estimating a norm (e.g., || - ||, for p > 1) within a factor of 2 requires at
least ©(logn) bits of communication, despite the fact that naively storing the counter (or norm)
might take only O(log(log(n))) bits.

Alice constructs a vector v € R? (for some dimension d) that has a single non-zero coordinate.
Specifically, if z = (z1,72,. .., Tiog(n)), she sets

log(n)
v = ( 3 1072, 0,0, ..., o).
j=1

Alice processes v with a streaming (or data-structure) algorithm Alg and sends the resulting state
Alg(v) to Bob.

Bob has:

e An index i € [log(n)].
o The subsequent bits zi11,Tit2,.. ., Tign) (as in an Augmented Index setting).

« He constructs a second vector w whose single non-zero coordinate is ;- ; 107.

Bob then subtracts w from v by feeding —w into the algorithm’s state:

Alg(v —w) = Alg(z 1ijj).

j<i
The outcome of Alg(v — w) gives Bob enough information to guess z;:

1, if Alg(v —w) > 181,
Ty =
0, otherwise.

Ifz; =1, thenv—w =73, 107z is at least 107, so any 2-approximation to ||v — w]||, must be

> 1701'. If z; = 0, then v — w is at most >, ; 107 < 2-10°71, so a 2-approximation stays below 170"‘

Hence, Bob can distinguish between x; = 0 and x; = 1 via the approximate norm.

6% Bit Lower Bound for Norm Estimation

The Gap Hamming Distance problem is defined over two strings z,y € {0,1}". We are guaranteed
that

Az, y) = Zn: Wy # yx}
s

is either > 5 + 2en or < § + en, and the task is to decide which of these two cases holds.

It is known that solving the Gap Hamming problem in a one-way randomized communication model
requires Q(E%) bits of communication. Moreover, one can show that approximating certain norms



(e.g. || - |lp) on binary data streams reduces to the Gap Hamming problem, implying a similar lower
bound for norm estimation.

We illustrate how the Gap Hamming problem can be related to Index by a public-coin argument:

e Public Coins: Suppose we have a ¢t x ¢ random matrix 7’;? (for rows k =1,...,t and columns
j=1,...,t). We view each row r* = (r¥ ... rF) as a random bit vector.

o Alice’s Input: A bitstream z € {0,1}* (with t = O(%)).

2

o Bob’s Input: An index i € {1,...,t} (or a set of bits b € {0, 1} derived from ).

We construct two new bit vectors a,b € {0, 1} as follows:

k

ap = Majority{ 7“;‘9 cxy =1}, by = 1y
If z; = 0, the i-th column rf does not affect ay, (since x; = 0 means the i-th column is not included
in the majority vote for ax). Thus, a and b are essentially uncorrelated along the i-th dimension.s If
x; = 1, then the ¢-th column does contribute to a, creating correlation between a and b.

Denote A(a,b) = Sk_; 1{ay # by}

Case x; = 0: The i-th column is not part of a’s majority computation. For each k, a; equals the
majority of other columns where x; = 1, and b, = rf is an independent random bit. One can show
that in expectation, half of these bits disagree, giving

E[A(a,b)] ~

DO+

Case x; = 1: Now the i-th column is included in a’s majority vote. Analyzing the probability that
bi = r¥ agrees with the majority bit of {ré€ :xj = 1} yields a difference on the order of ©(et) from
the % baseline. Concretely,

E[A(e,h)] ~ §-O(t) = §-6L).

Since t = @(8%), these two cases yield a noticeable gap in A(a,b) on the order of v/t ~ % This gap

is sufficient to distinguish whether z; = 0 or z; = 1 by checking if A(a,b) is closer to & or 5 — O(/1).

Because distinguishing z; = 0 from x; = 1 (an Index-like task) can be embedded in deciding which
side of the gap A(a,b) falls on (a Gap Hamming problem), we see that solving this problem requires
Q(e%) bits of communication. Therefore, the same applies for the norm estimation problem.



