CS 15-851: Algorithms for Big Data Spring 2025

Lecture 9 — 3/20
Prof. David Woodruff Scribe: Ramsey Boyce

0.1 Completing heavy hitters

Remark 1. Finding the top k heavy hitters quickly

Say we are trying to find the ¢; heavy hitters of a vector z with all coordinates x; > 0. Suppose at
most k heavy hitters. Find all ¢ with z; > €||x||1, here k = 1/e.

Our previous algorithms take O(n) time to find heavy hitters. How can we decrease the time
complexity?

Construct a new vector y' by grouping x into 2k groups of size n/2k. Run £1 heavy hitter algorithm
on y', the top k heavy hitters in = are also heavy hitters in y!.

Construct a new vector y? by grouping x into 4k groups of size n/4k. Run £1 heavy hitter algorithm
on 2 in parallel. In y?, we only need to examine the groups that were heavy hitters for 3!

Repeat this process for y3,y?, ..., y°8"/2k This creates a binary tree structure of height O(logn)
where we only consider 2k nodes at each level.

This results in O(klogn) total time to find the heavy hitters, from O(n). The space complexity
increases by a logn factor. The assumptions made can also be removed, but it complicates the
algorithm.

1 Estimating the number of non-zero entries

Suppose we would like to estimate the number of non-zero entries, where our input data comes from
a stream. We create some notation to refer to this quantity below.

Definition. |z|p = |{i such that z; # 0}|

Our goal is to output a number Z such that (1 —€)Z < |z|p < (1 + €)Z with probability 9/10.
Additionally, our algorithm should have low space complexity.

1.1 Sparse z
Suppose |z|g = O(1/€?). In this case we can run a k-sparse recovery algorithm, setting k = O(1/¢?).
Alternatively, we could use CountSketch.

If |z|o >> 1/€2, our general idea will be to sample z to get a sufficiently sparse vector, and then use
sparse recovery. However, finding the correct sampling rate is the challenge.

1.2 General z
Suppose we somehow had an estimate Z such that Z < |z|p < 2Z. We would like to improve this
estimate to a (1 % €) bound.

Since we have a rough estimate, we can determine the right sampling rate. Independently sample
each coordinate i with probability p = 100/(Z¢€?).

Let Y; be an indicator random variable if coordinate ¢ is sampled. Let y be the vector restricted to
coordinates ¢ for which Y; = 1.

Analyze |y|o by calculating its mean and variance.

100 100
Ellylo] = Z E[Y; Z p=nplzlo= ZQ’$|O_672-
i: ;70 i: ;70
100 200
Varllylo) = > Var[Yj]= > p(1—p) <plzfo= Zal%lo = —
i ;70 i x;#0

Note that we used that the Y; are independent for the variance calculation. By Chebyshev’s
inequality,
100 Var||ylo]e? 1
P — > — | < —— < —.
llo — Ellylo] > =~ | <~ <

Then we can use sparse recovery or CountSketch to compute |y|o exactly, and output |y|o/p. However,
we don’t know what value to use for Z!

To determine Z, we will guess it in powers of 2! Since 0 < |z|g < n, there are O(logn) guesses.

Guess i will sample at the rate p; = min(1,100/(2%?)). Also, we sample the coordinates as nested
subsets [n] = Sy 2 51 2 52 2 -+ 2 Siggn. This means that to get to the next subset from the
previous one, we just have to sample at a 1/2 rate.

For each guess of Z, we will run our previous algorithm. One of our guesses Z satisfies Z < |z|op < 27,
and we should use that guess. But how do we know which one?

Use the largest guess Z = 2! for which 400/¢? < |y|o < 3200/¢2.

P ‘ Notes

I [plo lazge
1/2 | |ylo is half as large as before
1/2¢ 400/€% < |ylo < 3200/€?

1/2¢1 lylo < 400/¢€2

lylo =0

As you go to smaller and smaller subsets, |y|o decreases. If 800/€ < E[|y|o] < 1600/€2,

400 3200
— <lylo < ——
6 €

with probability at least 49/50 by a Chebyshev bound. If 100/€? < El|y|o] < 200/€2,

400
lylo < —-
6

with probability at least 49/50 by Chebyshev again. So combining these, with probability 98/100,

we choose an i for which
200 1600
= < E[lylo] < a2

Note that using nested subsets lets us avoid a union bound over all levels.

There are only 4 such indices i (as Z = 2'), so by a union bound all 4 satisfy |y|o = (1 & €) E[|y|o]
simultaneously with probability 1 —4/50. So it doesn’t matter which of them we choose. Overall,
our success probability is 1 —2/50 — 4/50 > 4/5.

1.3 Space complexity

If we use our k-sparse recovery algorithm with k = O(1/€?), it takes O(logn/€?) space for logn
levels, making the total complexity O(log?n/e?) excluding random bits.

For the random bits (sampling), we only need pairwise independence for Chebyshev’s inequality.
The nested sampling can be implemented with a hash function h: [n] — [n]. Our scheme will be:
if h(7) < n/2, sample i, then for the next subset, if h(i) < n/4, sample i, ... This gives us nested
subsets and pairwise independence. In general, we check if the first i bits of h(j) are 0. This hash
function only requires O(logn) bits.

The space complexity can also be reduced to

o <1ogn(1og(1/2 + loglog”)> .

This is because sparse recovery gives us the values of the non-zero entries. However, we don’t
actually care what the values are, just that they’re non-zero. So we’ll reduce the space needed for
the counters in sparse recovery using primes.

The number of primes in {1,...,z} is ©(x/logx). There are O(1/€?) counters, each in the range
{poly(n),...,poly(n)}. Then at most O(logn/e?) primes divide at least one of these counters. A

random prime
(=0 <lognloglog(n/62)>

€2

is unlikely to divide any of our counters. So we can maintain the sparse recovery mod ¢, requiring
space

(log logn + log(1/6)>
0 2
€

for O(logn) sparse recovery instances.

	Completing heavy hitters
	Estimating the number of non-zero entries
	Sparse x
	General x
	Space complexity

