
CS 15-851: Algorithms for Big Data Spring 2025

Lecture 17 — March 20
Prof. David Woodruff Scribe: Kefan Cao

1 Estimating Heavy Hitters in a Stream

1.1 l1 and l2-Heavy Hitters

Definition. l1-guarantee:

• Output a set cibtaububg all items j for whih |xj | ≥ ϕ|x|1.

• The set should not contain any j with |xj | ≤ (ϕ − ϵ)|x|1.

Definition. l2-guarantee:

• Output a set cibtaububg all items j for whih x2
j ≥ ϕ|x|22.

• The set should not contain any j with x2
j ≤ (ϕ − ϵ)|x|22.

• The l2-guarantee is much stronger than the l1-guarantee.

If |xj | ≥ ϕ|x|1, then x2
j ≥ ϕ2|x|21 ≥ ϕ2|x|22 by squaring both sides.

For example, in a stream x = (
√

n, 1, 1, 1, . . . , 1), the first item is a l2 heavy hitter for constant ϕ, ϵ,
but not a l1 heavy hitter.

1.2 An Deterministic Algorithm to Find i

Suppose you are promised at the end of the stream, xi = n, and xj ∈ {0, 1} for j ∈ {1, 2, . . . , n}
with j ̸= i.

Let Ai ⊂ [n] be the set of indices with xj = 0, and Bi be the set of indices with xj = 1.

For each j in {1, 2, 3, . . . , log n}, let Aj ⊂ [n] be the set of indices with j-th bit in their binary
representation equal to 0, and Bj be the set with j-th bit equal to 1.

Compute aj =
∑

i∈Aj
xi and bj =

∑
i∈Bj

xi for each j in {1, 2, . . . , log n}, and then we can read off
the bianry representation of i. Memory used: O(log2 n) bits.

[
a1 a2 · · · alog n

b1 b2 · · · blog n

]

1

Memory used: O(log2 n) bits.

Instead, now suppose you are promised at the end of the stream, xi = 100
√

n log n, and xj ∈ {0, 1}
for j ∈ {1, 2, . . . , n} with j ̸= i. Then this might not work because the sums can be larger than the
sum with xi. A quick solution is to use use countsketch (random signed sum).

The additive Chernoff bound implies magnitude of noise in a count is at most
√

n log(n) w.h.p.

Remark 1. The l2-heavey hitter is a set instead of 1 element. We could possibly have 1/ϕ l2 heavy
hitters.

Now remove the assumptions about x’s.

1.3 CountSketch Achieves l2-guarantee

CountSketch does a random signed sum.

Assign each coordinate i a random sign σi ∈ {−1, 1}. If we add ≤ n random signs, σ1 + σ2 + . . . + σn,
the variance will be O(n). The standard deviation will be O(

√
n) with constant probability. The

sum will be Θ(
√

n log n) with high probability (1-1/n).

Randomly partition coordinates into B buckets, maintain cj =
∑

i:h(i)=j xi · σi in the j-th bucket.

σich(i) = σi

∑
j,h(j)=h(i)

xj · σj = σiσixi + σi

∑
j ̸=i,h(j)=h(i)

xj · σj

The expectation of the first term is xi and the expectation for the second part is 0. Thus,

E[σich(i)] = xi

Suppose we independently repeat this hashing scheme O(log n) times and output the median of
the estimates across the log n repetitions. The noise in a bucket is σi ·

∑
i′ ̸=i,h(i′)=h(i) σi′ · xi′ . The

expectation of the noise is 0. The variance of the noise is:

E

σi

∑
i′ ̸=i,h(i′)=h(i)

σi′xi′

2

=E

∑
i′ ̸=i

δ(h(i′) = h(i)) · σi′xi′

2

=E

 ∑
i′ ̸=i,i′′ ̸=i

δ(h(i′) = h(i)) · δ(h(i′′) = h(i)) · σi′ · σi′′ · xi′ · xi′′


=

∑
i′ ̸=i

E
[
δ(h(i′) = h(i)) · x2

i′

]

≤|x|22
B

So with constant probability, the noise in a bucket is O
(

|x|2√
B

)
.

Since the log n repetitions are independent, this ensures that our estimate σich(i) will equal xi ±
O

(
|x|2√

B

)
with high probability

(
1 − 1

poly(n)

)
. This is because in order for a median to be bad, we

need at least half of the repetitions to be bad.

2

We can use a union bound for every i. Hence we can approximate every xi simultaneously up to
additive error O

(
|x|2√

B

)
.

Remark 2. Memory used: O(B log2 n) bits.

1.4 Tail Guarantee

CountSketch approximates every xi simultaneously up to additive error O
(

|x|2√
B

)
. Then how should

we choose B?

We want to find all x2
i ≥ ϕ|x|22 and no x2

i ≤ (ϕ − ϵ)|x|22. Our goal is to estimate xi up to additive
error (

√
ϕ −

√
ϕ − ϵ)|x|2 ≈ |x|2√

B
.

Then we want
√

ϕ −
√

ϕ − ϵ = 1√
B

. For example, here we set ϵ = ϕ/2, then
√

ϕ −
√

ϕ − ϵ = 1√
B

,
O(

√
ϕ) = 1√

B
, B = O(1/ϕ).

Remark 3. The memory used now is O(log2 n/ϕ) bits.

Claim 1. Tail Guarantee: CountSketch approximates every xi simultaneously up to additive error
O

(|x−B/4|2√
B

)
where x−B/4 is x after zero-ing out its top B/4 coordinates in magnitude.

Proof. Let j be one of the top B/4 items. The probability that j collides with a specific item is
1/B. Using a union bound, the probability that there exists a coordinate j among the top B/4
items such that j collides with i is bounded by ≤ B/4 · 1/B = 1/4.

Thus with probability at least 3/4, in each repetition the top B/4 coordinates of x in magnitude do
not land in the same hash bucket as xi.

Given that we do not collide with the top B/4 coordinates, the noise in the bucket is O
(|x−B/4|2√

B

)
. ■

Remark 4. If we know x is B/4-sparse, then we can perfectly recover x. This is another algorithm
to recover sparse vector.

1.5 Deterministic l1-Heavy Hitters

Definition. An s × n matrix S is ϵ-incoherent if:

• for all columns Si, |Si|2 = 1.

• for all pairs of columns Si and Sj , |⟨Si, Sj⟩| ≤ ϵ.

• Entries can be specified with O(log n) bits of space.

Can compute Sx in a stream using O(s log n) bits of space.

3

Estimate x̂i:

x̂i =
n∑

j=1
⟨Si, Sj⟩xj

=⟨Si, Si⟩xi +
n∑

j=1,j ̸=i

⟨Si, Sj⟩xj

=|Si|22xi ± max
i,j

|⟨Si, Sj⟩||x|1

=xi ± ϵ|x|1

1.6 A Simple Construction of ϵ-Incoherent Matrices

Consider a prime q = Θ((log n)/ϵ). Let d = ϵ · q = O(log n).

Consider n distinct non-zero polynomials p1, . . . , pn, each of degree less than d:

p(x) = a0 + a1x + a2x2 + · · · + adxd

Consider polynomials mod q.

The number of distinct polynomials is qd. We want qd − 1 > n.

Then we want to associate the i-th column of S with pi.

S has q2 rows and n columns. We can partition S into q groups with q rows in each group. We can
associate the i with column with polynomial pi. In the j-th group and i-th column, we put a 1 on
pi(j) and 0 elsewhere.

Each column has norm |Si|2 = 1.

The dot product between any pair of distinct columns is bounded by d (because there are at most d
intersections for two polynomials of degree d = ϵq). So |⟨Si, Sj⟩| ≤ ϵ.

4

	Estimating Heavy Hitters in a Stream
	l1 and l2-Heavy Hitters
	An Deterministic Algorithm to Find i
	CountSketch Achieves l2-guarantee
	Tail Guarantee
	Deterministic l1-Heavy Hitters
	A Simple Construction of -Incoherent Matrices

