CS 15-851: Algorithms for Big Data Spring 2025

Lecture 17 — March 20
Prof. David Woodruff Scribe: Kefan Cao

1 Estimating Heavy Hitters in a Stream

1.1 [, and /,-Heavy Hitters
Definition. [i-guarantee:

« Output a set cibtaububg all items j for whih |z;| > ¢|z|;.
o The set should not contain any j with |z;| < (¢ — €)|z|;.

Definition. [»-guarantee:

e Output a set cibtaububg all items j for whih x? > ¢|z|3.
o The set should not contain any j with 9:5 < (¢ —¢e)|z|3.

e The ls-guarantee is much stronger than the /1-guarantee.

If |z > ¢|x|1, then .%‘]2 > ¢?|z|? > ¢%|z|3 by squaring both sides.

For example, in a stream x = (y/n,1,1,1,...,1), the first item is a I3 heavy hitter for constant ¢, e,
but not a Iy heavy hitter.

1.2 An Deterministic Algorithm to Find ¢

Suppose you are promised at the end of the stream, z; = n, and z; € {0,1} for j € {1,2,...,n}
with j # 4.

Let A; C [n] be the set of indices with z; = 0, and B; be the set of indices with z; = 1.

For each j in {1,2,3,...,logn}, let A; C [n] be the set of indices with j-th bit in their binary
representation equal to 0, and B; be the set with j-th bit equal to 1.

Compute a; =3 ;c 4, i and bj = 3 ;cp, @; for each j in {1,2,...,logn}, and then we can read off
the bianry representation of i. Memory used: O(log®n) bits.
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Memory used: O(log?n) bits.

Instead, now suppose you are promised at the end of the stream, z; = 100y/nlogn, and z; € {0,1}
for j € {1,2,...,n} with j # i. Then this might not work because the sums can be larger than the
sum with z;. A quick solution is to use use countsketch (random signed sum).

The additive Chernoff bound implies magnitude of noise in a count is at most /nlog(n) w.h.p.

Remark 1. The [5-heavey hitter is a set instead of 1 element. We could possibly have 1/¢ lo heavy
hitters.

Now remove the assumptions about x’s.

1.3 CountSketch Achieves /;-guarantee

CountSketch does a random signed sum.

Assign each coordinate i a random sign o; € {—1,1}. If we add < n random signs, o1+ 02+ ...+ oy,
the variance will be O(n). The standard deviation will be O(y/n) with constant probability. The
sum will be ©(y/nlogn) with high probability (1-1/n).

Randomly partition coordinates into B buckets, maintain c; = Zi:h(i) ;i - 0 in the j-th bucket.

OiCh(i) = Oi Z Tj 05 = 0i0i%; + 0f Z Tj- 0
3:h(5)=h(z) J#4,h(§)=h(i)
The expectation of the first term is x; and the expectation for the second part is 0. Thus,

E[Uich(z')] =T

Suppose we independently repeat this hashing scheme O(logn) times and output the median of
the estimates across the logn repetitions. The noise in a bucket is oy - 3252 p(in=n(i) o - @r. The
expectation of the noise is 0. The variance of the noise is:
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:E Z (5(}1(7/) = h(Z)) . 5(]1(1//) - h(l)) Oy O s Tpr o Ty
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=Y E[6(h(i") = h(i)) - 23]
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So with constant probability, the noise in a bucket is O (%)

Since the logn repetitions are independent, this ensures that our estimate o;cy,(;) will equal z; +
@ . . 1s _ 1 .. . .

(@) ( \/§> with high probability (1 pioly(n))‘ This is because in order for a median to be bad, we

need at least half of the repetitions to be bad.



We can use a union bound for every i. Hence we can approximate every x; simultaneously up to

additive error O (%)

Remark 2. Memory used: O(Blog?n) bits.

1.4 Tail Guarantee

|z]2

CountSketch approximates every x; simultaneously up to additive error O (ﬁ) Then how should
we choose B?

We want to find all 27 > ¢|z|3 and no x? < (¢ — €)|x|3. Our goal is to estimate z; up to additive
error (Vo — /& —€)|z]y ~ %.

Then we want /¢ — /¢ — € = %. For example, here we set € = ¢/2, then /¢ — /o — € = %,
OV = ==, B = 0(1/6).

Remark 3. The memory used now is O(log?n/¢) bits.

Claim 1. Tail Guarantee: CountSketch approximates every z; simultaneously up to additive error

0O (%) where x_p /4 is  after zero-ing out its top B/4 coordinates in magnitude.

Proof. Let j be one of the top B/4 items. The probability that j collides with a specific item is
1/B. Using a union bound, the probability that there exists a coordinate j among the top B/4
items such that j collides with i is bounded by < B/4-1/B = 1/4.

Thus with probability at least 3/4, in each repetition the top B/4 coordinates of x in magnitude do
not land in the same hash bucket as x;.

Given that we do not collide with the top B/4 coordinates, the noise in the bucket is O (lx’jg‘h ) . N

Remark 4. If we know z is B/4-sparse, then we can perfectly recover z. This is another algorithm
to recover sparse vector.

1.5 Deterministic /,-Heavy Hitters

Definition. An s x n matrix S is e-incoherent if:

o for all columns S;, |S;|2 = 1.
o for all pairs of columns S; and Sj, [(S;, S;)| < e.

o Entries can be specified with O(logn) bits of space.

Can compute Sz in a stream using O(slogn) bits of space.



Estimate £;:

J=1j#i
—15; B & max (S5, 8] s

=x; + €|z|;

1.6 A Simple Construction of e-Incoherent Matrices

Consider a prime g = O((logn)/¢). Let d = ¢ - g = O(logn).

Consider n distinct non-zero polynomials py, ..., p,, each of degree less than d:
p(x) =ag+ a1z + ast® + -+ + agz®

Consider polynomials mod q.
The number of distinct polynomials is ¢%. We want ¢% — 1 > n.
Then we want to associate the i-th column of S with p;.

S has ¢? rows and n columns. We can partition S into ¢ groups with ¢ rows in each group. We can
associate the ¢ with column with polynomial p;. In the j-th group and ¢-th column, we put a 1 on
pi(j) and 0 elsewhere.

Each column has norm |S;|2 = 1.

The dot product between any pair of distinct columns is bounded by d (because there are at most d
intersections for two polynomials of degree d = €q). So [(S;, S;)| < e.
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