15-851 ALGORITHMS FOR BI1G DATA — Spring 2025

PROBLEM SET 3 SOLUTIONS

Problem 1: Geometric Mean Estimator for /;-Estimation

1. From class we have the property that if we have ), a; - C; where each C; is an i.i.d. Cauchy random
variable, then this is distributed as |a|; - C

So, we have that (Sz), = |z|; - C4, (Sx)b =|z|; - Cs, and (Sz). = |z|1 - C3 where Cy,Cy, and C5 are
independent Cauchy random variables. We therefore have that

E[F] = |z|: - E[|C1C2C5['7].
So we have to show that E[|C;C2C3|'/?] is a finite scalar that does not depend on z. Clearly

E[|C;C>Cs5|*/3] does not depend on . Note that E[|C1CoC3|/3] = E[|C1|/?] - E[|Cy|'/3] - E[|C5]*/3]
since C'1, C5, and C3 are independent. We now need to show that it is finite. We have that
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which converges to some constant that is strictly greater than 0.

2. Again we have that [
F; = ||93‘?01C203\1/3 = |z|; - |C’10203|1/3-

‘We have that
Var(F,) = |z|? - Var(|C1C,C3)'/?).

By deﬁnition, we know that Var(|010203\1/3) = E[‘010203|2/3] — E[|010203‘1/3]2 S EH010203|2/3].

So we have | ‘2/3
Var (|0, CoC5|/3) /// 17275 dz1dzod
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This again converges to a constant.

3. Using the first part, we can see that

Using the second part, we also have
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Note that we can move the variance into the summation because all the F;’s are independent.
Now, using Chebyshev’s inequality will give us the result.
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for appropriate k = O(s72).



Problem 2: Online Leverage Score Sampling plus Merge and Reduce

1. Let us say that the approximation factor we use in each coreset is . At each level of the tree, we
suffer an additional multiplicative (1 &) error in our approximation. So, since the height of the tree
is O(log(n/2k)), we have that the final coreset is a (1 £ log(n/2k) - v) multiplicative approximation.

2.

Recall that we could assume that k& < n%%. Therefore, we have that log(n/2k) = ©(logn), so we have
that the final coreset is a (1 + logn - ) multiplicative approximation. Now, we want logn - v < € to
get the result. So, we should set v < ¢/logn, giving us k = O(dlog® n/e?).

We now analyze the space. As per the problem statement, a coreset can be constructed in O(kdlogn)
space. In addition, storing a coreset requires O(kdlogn) space since each row has d entries that each
take logn bits to store. We keep at most one coreset per level of the binary tree at one time. So, the
total space is

(a)

(c)

O(kdlog®n) = O(d*log* n/e?).

Let us maintain a d x d matrix M. Upon seeing a row 7 in the stream, you can store it exactly
in O(dlogn) space. Then we can compute 777 using O(d? logn) space, and take M = M + rTr.
Storing M only uses O(d?logn) space, and M = A] | A; 1.

So, given the next row in the stream, we can exactly compute ;.

We will first show that the online leverage score upper bounds the actual leverage score of matrix
A = [A; V).
We have that

¢; = min(a] (AT [ A;—1 + M) ta, 1)

and
7(A") = a] (ATA + \I) " ta.

We want to show that
a;»r(A;»r_lAi,1 -+ )\I)flai 2 azT(ATA + )\I)flai.

If we prove that ATA+AI = AT | A; 1+, then we also have (AT | A;_1+AI)7! = (ATA+AI)~!
as per the hint. This would give us what we want. We first see that

ATA=AT (A, 1+ ala;.
j=i
Since for each j we have that a;aj is PSD, then we have that

ATA = AT A .

Now we can use the sampling without replacement bound on A’. As per the hint given on piazza,
we have to sample each row of A’ (not A). However, we can simply set p; for all rows of A’ that
correspond to v/ AI to 1. Therefore, we simply add these rows to our sample.

In the sampling without replacement bound, for i € [n], we take u; = ¢; and for i € (n,n + d] we
take u; = 1. We also set v = €/3. So, we have that simultaneously for all  we have

ITA2||3 = (14 2/3)] A3

This gives us
1T Az3 + M]3 = (1 £ /3)(|[Az(3 + Al|[13)-
We first prove that ||Ax||3/||z||3 > o2,,. Take the SVD of A. This gives us

min*

[Az]3 = |USVTz|3 = |2V 3.



Let us set y = VTx. So we further have
VT3 = 1Zyll5 =D o7y} > omin Y v7 = ominllylls.
i i

So we finally have
[A=[3 _ ofinllyllz _ ominllVT2l3 _ ominll=ll3

min

=3 = l=l3 =3 =3

So, we have by the previous part that

IT A3 = (1 £ ¢/3)(| A3 £ cofn(A)]2]3) = (1 £ e/3)([|Ax]|3 + el Ax|3).

min
This gives us the desired result.

Notice that as proven in the previous part, our space usage to achieve a (1 + &) approximation
after the merge-and-reduce scheme is O(d? logn/e?) times poly log(r/2k) where r is the number
of rows that are being passed in the stream. Recall that the number of rows is equivalent to the
number of nonzeros in 7. This is, by the sampling without replacement result, the number of
rows, r, is

O(c72 - log d - dlog(||A[3/X)).
2

Plugging in A =€ - 0;;,, we get that the number of nonzeros in T is
O(e™% -logd - dlog(r/¢)).
We know that k has a factor of d and €72, so we have that
poly log(r/2k) = O(poly log(log dlog(x/c))).

This gives us the final space result. For the error guarantee, we can simply combine parts 1 and
2c.



