
15-851 Algorithms for Big Data — Spring 2025

Problem Set 3 Solutions

Problem 1: Geometric Mean Estimator for ℓ1-Estimation

1. From class we have the property that if we have
∑

i ai · Ci where each Ci is an i.i.d. Cauchy random
variable, then this is distributed as |a|1 · C.

So, we have that (Sx)a = |x|1 · C1, (Sx)b = |x|1 · C2, and (Sx)c = |x|1 · C3 where C1, C2, and C3 are
independent Cauchy random variables. We therefore have that

E[Fi] = |x|1 ·E[|C1C2C3|1/3].

So we have to show that E[|C1C2C3|1/3] is a finite scalar that does not depend on x. Clearly
E[|C1C2C3|1/3] does not depend on x. Note that E[|C1C2C3|1/3] = E[|C1|1/3] · E[|C2|1/3] · E[|C3|1/3]
since C1, C2, and C3 are independent. We now need to show that it is finite. We have that

E[|C1C2C3|1/3] =
∫ ∫ ∫

|z1z2z3|1/3

π3(1 + z21)(1 + z22)(1 + z23)
dz1dz2dz3

which converges to some constant that is strictly greater than 0.

2. Again we have that
Fi = ||x|31C1C2C3|1/3 = |x|1 · |C1C2C3|1/3.

We have that
Var(Fi) = |x|21 ·Var(|C1C2C3|1/3).

By definition, we know that Var(|C1C2C3|1/3) = E[|C1C2C3|2/3]−E[|C1C2C3|1/3]2 ≤ E[|C1C2C3|2/3].
So we have

Var(|C1C2C3|1/3) ≤
∫ ∫ ∫

|z1z2z3|2/3

π3(1 + z21)(1 + z22)(1 + z23)
dz1dz2dz3.

This again converges to a constant.

3. Using the first part, we can see that

E[F] =
3

Ck

k/3∑
i=1

E[Fi] =
3

Ck
· k
3
· C · |x|1 = |x|1.

Using the second part, we also have

Var[F] =
9

C2k2

k/3∑
i=1

Var[Fi] ≤
9

C2k2
· k
3
·O(|x|21) = O(|x|21/k).

Note that we can move the variance into the summation because all the Fi’s are independent.

Now, using Chebyshev’s inequality will give us the result.

Pr(|F − |x|1| ≥ ε · |x|1) ≤
O(|x|21/k)
|x|21 · ε2

≤ 1/10

for appropriate k = O(ε−2).

1

Problem 2: Online Leverage Score Sampling plus Merge and Reduce

1. Let us say that the approximation factor we use in each coreset is γ. At each level of the tree, we
suffer an additional multiplicative (1± γ) error in our approximation. So, since the height of the tree
is Θ(log(n/2k)), we have that the final coreset is a (1± log(n/2k) · γ) multiplicative approximation.

Recall that we could assume that k < n0.9. Therefore, we have that log(n/2k) = Θ(log n), so we have
that the final coreset is a (1 ± log n · γ) multiplicative approximation. Now, we want log n · γ ≤ ε to
get the result. So, we should set γ ≤ ε/ log n, giving us k = O(d log2 n/ε2).

We now analyze the space. As per the problem statement, a coreset can be constructed in O(kd log n)
space. In addition, storing a coreset requires O(kd log n) space since each row has d entries that each
take log n bits to store. We keep at most one coreset per level of the binary tree at one time. So, the
total space is

O(kd log2 n) = O(d2 log4 n/ε2).

2. (a) Let us maintain a d × d matrix M . Upon seeing a row r in the stream, you can store it exactly
in O(d log n) space. Then we can compute r⊺r using O(d2 log n) space, and take M = M + r⊺r.
Storing M only uses O(d2 log n) space, and M = A⊺

i−1Ai−1.

So, given the next row in the stream, we can exactly compute ℓi.

(b) We will first show that the online leverage score upper bounds the actual leverage score of matrix
A′ = [A;

√
λI].

We have that
ℓi = min(a⊺i (A

⊺
i−1Ai−1 + λI)−1ai, 1)

and
τi(A

′) = a⊺i (A
⊺A+ λI)−1ai.

We want to show that

a⊺i (A
⊺
i−1Ai−1 + λI)−1ai ≥ a⊺i (A

⊺A+ λI)−1ai.

If we prove that A⊺A+λI ⪰ A⊺
i−1Ai−1+λI, then we also have (A⊺

i−1Ai−1+λI)−1 ⪰ (A⊺A+λI)−1

as per the hint. This would give us what we want. We first see that

A⊺A = A⊺
i−1Ai−1 +

n∑
j=i

a⊺j aj .

Since for each j we have that a⊺j aj is PSD, then we have that

A⊺A ⪰ A⊺
i−1Ai−1.

Now we can use the sampling without replacement bound on A′. As per the hint given on piazza,
we have to sample each row of A′ (not A). However, we can simply set pi for all rows of A

′ that
correspond to

√
λI to 1. Therefore, we simply add these rows to our sample.

In the sampling without replacement bound, for i ∈ [n], we take ui = ℓi and for i ∈ (n, n+ d] we
take ui = 1. We also set γ = ε/3. So, we have that simultaneously for all x we have

∥TA′x∥22 = (1± ε/3)∥A′x∥22.

This gives us
∥TAx∥22 + λ∥x∥22 = (1± ε/3)(∥Ax∥22 + λ∥x∥22).

(c) We first prove that ∥Ax∥22/∥x∥22 ≥ σ2
min. Take the SVD of A. This gives us

∥Ax∥22 = ∥UΣV ⊺x∥22 = ∥ΣV ⊺x∥22.

2

Let us set y = V ⊺x. So we further have

∥ΣV ⊺x∥22 = ∥Σy∥22 =
∑
i

σ2
i y

2
i ≥ σ2

min

∑
i

y2i = σ2
min∥y∥22.

So we finally have
∥Ax∥22
∥x∥22

≥ σ2
min∥y∥22
∥x∥22

=
σ2
min∥V ⊺x∥22

∥x∥22
=

σ2
min∥x∥22
∥x∥22

.

So, we have by the previous part that

∥TAx∥22 = (1± ε/3)(∥Ax∥22 ± εσ2
min(A)∥x∥22) = (1± ε/3)(∥Ax∥22 ± ε∥Ax∥22).

This gives us the desired result.

(d) Notice that as proven in the previous part, our space usage to achieve a (1 ± ε) approximation
after the merge-and-reduce scheme is O(d2 log n/ε2) times poly log(r/2k) where r is the number
of rows that are being passed in the stream. Recall that the number of rows is equivalent to the
number of nonzeros in T . This is, by the sampling without replacement result, the number of
rows, r, is

O(ε−2 · log d · d log(∥A∥22/λ)).

Plugging in λ = ε · σ2
min, we get that the number of nonzeros in T is

O(ε−2 · log d · d log(κ/ε)).

We know that k has a factor of d and ε−2, so we have that

poly log(r/2k) = O(poly log(log d log(κ/ε))).

This gives us the final space result. For the error guarantee, we can simply combine parts 1 and
2c.

3

