
Recent Efficiency Improvements 
to Transformers

David Woodruff

Carnegie Mellon University / Google



Outline
1. Background on Transformers and time complexity

2. HyperAttention

3. PolySketchFormer

4. Conclusions and Recent Work









































HyperAttention

Insu Han (Adobe), Rajesh Jayaram (Google), Amin Karbasi (Yale), 

Vahab Mirrokni (Google), David Woodruff (CMU), Amir Zandieh









































PolySketchFormer

Praneeth Kacham, Vahab Mirrokni, Peilin Zhong (Google Research)



Generalizations of Softmax Attention

• Let be an arbitrary function that measures similarity between the 
query and key 

• Attention mechanism w.r.t sim is

• Softmax: 

5

௝
௜ஸ௝

௝ ௜

௜ᇲஸ௝ ௝ ௜ᇲ
௜

௜ஸ௝

௝ ௜

௜ᇲஸ௜ ௝ ௜ᇲ
௜



Kernel View of Attention

• Suppose is such that 

• If ᇱ and ᇱ , output is

• Here LT is the lower triangular part for the causal setting

• Why write this way?

• Linear time algorithm for computing 𝖳

• Runtime depends on output dimension of 

• What about for softmax?

• No finite dimensional feature maps
6

ିଵ ᇱ ᇱ 𝖳

ᇱ



Previous Work
• Performer (Choromanski et al.,) uses a finite-dimensional map to approximate exponential

• Vectors with larger norms require with larger dimension

• Other works consider arbitrary instead of first defining 

(Katharopoulos et al. '20), 

• Model quality is worse compared to softmax

• Is softmax necessary? Do other functions with similar properties work?

• Consider ௣ where is an even integer

• Always 

• Increases as goes up

7



Feature map for Polynomials

• A finite dimensional such that ௣?

⊗௣

• If ௛ , then ⊗௣ ௛೛

⊗௣
(௜భ,௜మ,…,௜೛) ௜భ ௜మ ௜೛

8

⊗௣ ⊗௣ ௣



Linear Attention using Polynomials

• Given ௡×௛

• Compute ⊗௣ and ⊗௣

⊗௣ ⊗௣ 𝖳 in ௣ାଵ time

• Typically, = 64, 128, 256

• Too expensive even for 

• Use sketching to approximate!

9



Sketching for Approximate Matrix Multiplication

• Want to compute

⊗௣ and ⊗௣ can have a large number of columns

• Can we compute matrices ᇱ and ᇱ such that ⊗௣ ⊗௣ 𝖳 ᇱ ᇱ 𝖳?

• Ahle et al. '20 give a fast sketch called TensorSketch

• Can approximate using ᇱ ᇱ 𝖳

10

⊗௣ ⊗௣ 𝖳



Sketching for Approximate Matrix Multiplication

11

𝑄⊗௣

(𝐾⊗௣)𝖳

𝑄ᇱ

(𝐾ᇱ)𝖳



Matrix Sketching

• Never have to compute the matrices ⊗௣ ⊗௣ and just use ᇱ and ᇱ

• Can simply compute ᇱ ᇱ 𝖳 in linear time

• Does this work?

• Model training fails to converge

• Non-negativity

ᇱ ᇱ 𝖳 can have negative entries, whereas entries of ⊗௣ ⊗௣ 𝖳 are 

12



Solving Issue of Negative Entries

• Consider ᇱᇱ ᇱ ⊗ଶ and ᇱᇱ ᇱ ⊗ଶ

ᇱ ᇱ are sketches for degree 

• All entries of ᇱᇱ ᇱᇱ 𝖳 are non-negative! They are of the form ᇱ ᇱ ଶ

• Show that if ᇱ and ᇱ have an approximate matrix product property for degree , then 
ᇱᇱ and ᇱᇱ have a similar guarantee for degree 

ᇱᇱ ᇱᇱ 𝖳 ⊗௣ ⊗௣ 𝖳
ி is small

• Compute ᇱᇱ ᇱᇱ 𝖳

• The model converges!

13



Other Optimizations

• TensorSketch is a random sketch – instead, treat the sketch as learnable parameters

• When computing 𝖳 , use block multiplication and cumulative sums

• Compute diagonal blocks exactly as such blocks are sensitive to approximation



Model Perplexities

15



Training Latencies

16



Conclusions and Future Work

In practice, 

1. FlashAttention is an optimized implementation of full softmax attention and is 
used heavily

2. HyperAttention on pretrained models seems to reduce quality too much. Fine-
tuning can increase quality but it depends on the hash bucket sizes

3. PolySketchFormer has not been tried on very long contexts. Hyperattention
allows more state to be maintained for long contexts by increasing the number of
heavy entries stored

Recently [Kannan, Bhattacharyya, Kacham, W] use tools from randomized linear algebra 
to show for a large class of loss functions, there is a small subset of keys so that any 
heavy attention score involves a key from that subset. Still being tested!


