Recent Efficiency Improvements
to Transformers

David Woodruff

Carnegie Mellon University / Google

Outline

. Background on Transformers and time complexity
. HyperAttention

. PolySketchFormer

. Conclusions and Recent Work

Al Revolution

Meta Al

Code Llama

PROMPT

Clear

2023 IN REVIEW

THE YEAR Al. ATE THE
INTERNET

Call 2023 the year many of us learned to communicate, create,
cheat, and collaborate with robots.

By Sue Halpern
December 8, 2023

Autoregressive Models

Autoregressive
Language Model

|

Autoregressive Models

I . - [

Autoregressive

Language Model

Autoregressive Models

Autoregressive
Language Model

Autoregressive Models

--

v B e B o N ov [e [piovea |

____________________________________ e L,

Autoregressive

Language Model

|

Transformers

100% | text Text Text
® image Classification Sumwmarization
m other
75% “ multimodal
® audio Q ;
) vestion i Entity
50% B video Answering Transforwmers Recognition
9
25% Lz | Language Text
9% Modeling Generation
; .
o S,Tg Translation
pre-2020 2021 2022

Vision Transformer (ViT)
Growth of transformer-related papers

Transformer Encoder

Transformer (Vaswani et al., 17’)

Transformers

| Write a python code to generate webpage

e f)
.

' python — Transformer

\)

Input Vector
Prompt Embedding

Transformers

| Write a python code to generate webpage

code

t

Input

— Transformer

Vector
Prompt Embedding

2oz 8]
2oz 58]

Out'put
Embedding

Transformers

| Write a python code to generate webpage

code

t

Input Vector
Prompt Embedding

Transformer

-

Dictionary

for importwhile def torclmumpy

0,3

0,3

-

|

Out'put Token
Embedding Generation

10

Transformers

Transformer
Fie N
4 \\
)) e N e B '\
5 5
215 A=
t 1 2o £ & o [l
= Y— = 8
© ®
S S
| | _ J _ J
%). Output
Input Token C J | Embedding
Prompt Embedding
X L

Transformers

Self Attention
-
&Q\@ 4 Q§ 3 0060 O
write -. write -.
a . a .
python j — | python |01 |01|04f03]|01]| X :-
code [code [
to . to .
Attention scores of previous tokens

LIl

Algorithmic Acceleration

13

Algorithmic Acceleration

quadratic O (n?)

runtime

| — Transformer Q»
C J

n ~ 10° tokens N Y,

Algorithmic Acceleration

Transformer
[) quadratic O (n?)
n ~ 10° tokens c Self Attention =
,. gl | B 5| |2 2
© © = =
C ﬁ = SYRES 5 0(n)
D O S = -
N . e Z (@) .
S | ; - . O linear
+— O (0] Lo
\ > >
2 ““ E S LIU n
Input LO0(n) O(le) o(n) o(n))
Embedding X L

15

(Layer Normalization]

Self Attention

Algorithmic Acceleration

H
W) @
\

K /

H:H

softmax(QK") y

X — VE Rn*xd
|

[Layer Normalization]

16

(Layer Normalization]

Algorithmic Acceleration

Self Attention
Q’ K’ V € [RnXd
|

REEE Sum SR
X

En
D~ A=exp(QK") v
softmax(QK™")

[Layer Normalization]

memory/runtime:() (n?)

17

Previous Work

Sparse Structure

» Local Attention (Parmar et al., 18’) |
» Sparse Transformer (Child et al., 197) r |
» Longformer (Beltagy et al., 20’) - .
» Reformer (Kitaev et al., 20’) EEE =~ EEEE
. Sinkhorn Attention (Tay et al., 20) T

Kernel Methods | 3 | B H . -l-

» Lambda network (Bello et al., 21")

» Performer (Choromanski et al., 21°) (b) Sparse Transformer (strided)
» Random Feature Attention (Peng et al., 21°)

» Randomized Attention (Zheng et al., 22’)

(b) Random feature attention.

Linformer b

kxn dm X dx k x dy

n Xdm

Nystrom approximation

softmax
Low-rank Approximation
» Linformer (Wang et al., 20’) l
» Nystromformer (Xiong et al., 21°) 00 @
» Nested Attention (Max et al., 217) e

lo.z I‘u‘
- @ \\ @ @m

Lo

18

Previous Work

(AlIman & Song 23’) High quality (1/poly(n))
entrywise approximation of Att(Q, K, V') requires
nearly quadratic time assuming SETH

19

Previous Works

No End-to-End approximation (in some works)
. Only approximate matrix A = exp(QK")

Would like to:
. Compute Att € R™*? such that
|l Att — Att(Q,K,V) llopis small

These methods do not support causal masking

20

HyperAttention

Insu Han (Adobe), Rajesh Jayaram (Google), Amin Karbasi (Yale),

Vahab Mirrokni (Google), David Woodruff (CMU), Amir Zandieh

Algorithmic Acceleration

Q, K,V eRrnxd Self Attention

1. Approximate nxn

Di;=) Aij= X exp({q; k;j))

J€[n] J€[n]

Sum e
X
X

o
D A=exp(QK") v
softmax(QK™")

2. Approximate matrix product A - V

memory/runtime: O (n?)

21

Algorithmic Acceleration

Q K,V e rv Self Attention

1. Approximate nxm mxd

Dii= X Aij= 2 exp({qikj))

J€[n] J€[n]

CEoD

2. Compute a row sampling sketch S
€ R™*™ where row i is sampled with
probability || v; |5 > m
~ srank(softmax(QK")) - d

Algorithmic Acceleration

d
Q, K, V =]Rnx
1. Approximate

~

Dii= X Aij= X exp({q:k;j))
JE[n] JE[n]

2. Compute a row sampling sketch S €
R™*™ where row i is sampled with
probability || v; |5 > m =~
srank(softmax(QK")) - d

Self Attention

nxn

Sum Fee

H:

D—l

X

A = exp(QK")
softmax(QK™")

23

Algorithmic Acceleration

Approximate D; ; =), Al] Y. exp({(q;, k]))

j€[n] JE[n]

Find ‘Heavy’ elements of A = exp(QKT) Estimate ‘Light’ elements of A via

uniform column sampling
' i

ANNNENNEEENENE
e

less im—portant

24

Algorithmic Acceleration

Approximate D; ; =), Al] Y. exp({(q;, k]))

j€[n] JE[n]

Find ‘Heavy’ elements of A = exp(QKT) Estimate ‘Light’ elements of A via

I ﬂ

uniform column sampling

|

E

D; ; =contribution of heavy elements + contribution of light elements

less im—portant

~

25

Algorithmic Acceleration

Theorem (informal). If the maximum squared column norm in softmax(QK ") is
and the ratio of max and min row sums in A = exp(QK ") after removing heavy

~

elements is 1°(1) then Att can be computed in O (dn*t°)) time with:
I softmax(QKT)V — Att ||, < € || softmax(QK™) lgpll V oy

ni-o(1)

A .q q 1 q
Column norm bound non-trivial — allows for entries as large as — L in softmax(QK™)
>—0

n2

Estimating the contribution of light elements is non-trivial
Tested assumption of squared column norms in first attention layer of T2T-ViT on ImageNet

For chatgim2-6b-32k and LongBeach, only the lexicographically first few columns had large norm

26

ithmic Acceleration

Algor

27

Algorithmic Acceleration

1/2
1/3

B 1. || softmax(QKT) 112,~ n

1/2
|1V IE,=1
1/3
1/2
1/2

| | Il softmax(QKT)V — Attn I12,< n/10

1/3 _)
1/3

7 Hardness:n2-°(1)

(")

1/3 1/3
softmax(QK") =D71A vy
(Bounded column norms in softmax(QK™) avoids this hard instance!)

o) ol ol ol jol ol ol ol Nl Nl ey s

28

Algorithmic Acceleration

Finding Heavy contributions in practice

| | less important

A = exp(QK")

memory/runtime: O (n?)

A GPU-friendly algorithm to compute
heavy entries and minimize 1/O

29

Algorithmic Acceleration

Finding Heavy contributions in practice

| | less important

A = exp(QKD)

memory/runtime: O (n?)

A Permutation algorithm that gathers
neavy entries around the diagonal

30

Algorithmic Acceleration

Self Attention

| | less important

A = exp(QKD)

memory/runtime: O (n?)

How can entries be gathered?

= SortLSH (Locality Sensitive Hashing)

31

Algorithmic Acceleration

Self Attention

Ll dissimilar

q: K, qe
0 ¢ O

Ks
°

q, K3q5K,
o ¢ O ¢

32

Algorithmic Acceleration

Self Attention

de

O
G S K
3 @ Kj
O . . .
SimHash lsmllar points are hashed to

Ll dissimilar

same or neighbouring buckets

q: Kiq,Ke q3K;qe Ks qs K3 qs K,
@ O0¢ 000 e 0 6 0 &
100101101

33

Algorithmic Acceleration

k. Kok, Kkskk

Self Attention

de

© k
Sort rows/cols by qs ‘4 Kk,

bucket IDs with O N

hamming dist. 1 SimHash | Similar points are hashed to
same or neighbouring buckets

q: Kiq,Ke q3K;qe Ks qs K3 qs K,
@ O0¢6 OO0 0 e 0 6 0 &
100101101

34

Algorithmic Acceleration

k. k.k,k:k;k,

Self Attention

Sort rows/cols by
bucket IDs with
hamming dist. 1

Approximately
block-diagonal

de
q 04 k
3
@) 3

: similar points are hashed to
SimHash : .
same or neighbouring buckets

q: kKiq;Ke g3 K;q6 Ks qs K3 qsKq
@ 066 OO0 0 e 0 6 0 &

100101101

35

Algorithmic Acceleration

Causal Masking

exp (QKT) @ Mcausal

Output embeddings only depend
on input embeddings in the past

36

Algorithmic Acceleration

exp (QKT) @ Mcausal

Output embeddings only depend
on input embeddings in the past

Causal Masking

Divide and conquer

~

Joeues

37

Algorithmic Acceleration

exp (QKT) @ Mcausal

Output embeddings only depend
on input embeddings in the past

Causal Masking

Divide and conquer

~

38

Algorithmic Acceleration

ChatGLM2

Dialog:

Marisol: it's so sweet he had been waiting

Jackie: we don't know yet when we'll get married but you are all invited ofc
Carlita: PLEASE don't pick June, I'll be in Canada then

Eunica: | hate weddings but I'll make an exception

Marisol: can't wait!

LongBench datasets with n = 32768

HyperAttention: Long-context Attention in Near-Linear Time

Insu Han Rajesh Jayaram Amin Karbasi
Yale University Google Research Yale University, Google Research
insu.han@yale.edu rkjayaram@google.com amin.karbasi@yale.edu
Vahab Mirrokni David P. Woodruff Amir Zandieh
Google Research CMU, Google Research Independent Researcher
mirrokni@google.com dwoodruf@cs.cmu.edu amir.zed512@gmail.com

perplexity

O—0

? z%’é)
0—0—0—9 7 ‘BB 7
‘AR RR 7
/ﬁ ‘R 7
BB 7

. 7% % H E
m B A0V YOG A0 Y

0 8 12 16 20 24 2
number of replaced layers

2.0 o
-
©
(O}

)

1.5 8-

1.0

39

PolySketchFormer

Praneeth Kacham, Vahab Mirrokni, Peilin Zhong (Google Research)

Generalizations of Softmax Attention

e Let sim(q, k) = 0 be an arbitrary function that measures similarity between the
query g and key k

® Attention mechanism w.r.t sim is

51'177(qj, kl)

3 (%
isti'stIm(CIj» ki)

Oj=

o Softmax: sim(q, k) = exp({(q, k)) exp({q;, ki)) o
=i Yir<iexp({q;, kir))

Kernel View of Attention

® Suppose @ is such that s1m(q, k) = (@ (q), p(k))
fQ"' = @(Q) and K' = @(K), outputis

D™t LT(Q"- (K" -V

Here LT is the lower triangular part for the causal setting

® Why write this way?

e Linear time algorithm for computing LT(A - BT) - C
® Runtime depends on output dimension of ¢ ()

® What about ¢ for softmax?

® No finite dimensional feature maps

Previous Work

® Performer (Choromanski et al.,) uses a finite-dimensional map @ to approximate exponential
® Vectors with larger norms require ¢ with larger dimension

® Other works consider arbitrary @ instead of first defining sim(-,*)
® p(x) = elu(x) + 1 (Katharopoulos et al. '20), @ (x) = relu(x)
® Model quality is worse compared to softmax

® |s softmax necessary? Do other functions with similar properties work?
e Consider sim(q, k) = (q, k)P where p = 2 is an even integer
e Always = 0

® Increases as (g, k) goes up

Feature map for Polynomials

* A finite dimensional @ suchthat (@ (q), @ (k)) = (q, k)P?
° p:x > xOP
o Ifx € R", then x®P € R

QDY .. . L= X X e e X
‘(X p)(ll,lz lp)_xll xlz xlp

(q®P, k¥P) = (q, k)"

Linear Attention using Polynomials

e Given Q, K,V € R

e Compute Q®P and KOP

° LY(Q@W : (K®p)T) -V in 0(nhp+1) time
® Typically, h = 64, 128, 256

® Too expensive even forp = 4

® Use sketching to approximate!

Sketching for Approximate Matrix Multiplication

® Want to compute

LY(Q@)p : (K®p)T) V4

o Q®p and K®P can have a large number of columns

e Can we compute matrices Q' and K’ such that Q®? - (K®P)T = Q' - (K")T?

® Ahle et al. '20 give a fast sketch called TensorSketch

e Can approximate using LT(Q’ - (K')") -V

Sketching for Approximate Matrix Multiplication

(K®P)T

Matrix Sketching

Never have to compute the matrices Q®?, K®P and just use Q' and K’

Can simply compute ZT{Q" - (K')") - V in linear time
Does this work?

® Model training fails to converge
Non-negativity

® Q' - (K')T can have negative entries, whereas entries of Q®P - (K®P)T are > 0

12

Solving Issue of Negative Entries

o ConsiderQ” — (QI)®2 and K” — (K/)®2
® Q', K' are sketches for degree p/2
e Allentries of Q"' - (K'')" are non-negative! They are of the form (q', k') = 0

® Show that if Q' and K' have an approximate matrix product property for degree p/2, then
Q"' and K"’ have a similar guarantee for degree p

e[| Q" - (KT — QP (K®P)T || is small
e Compute LT(Q" - (K'Y -V

® The model converges!

13

Other Optimizations

® TensorSketch is a random sketch — instead, treat the sketch as learnable parameters
® When computing L7(A - B") - C, use block multiplication and cumulative sums

® Compute diagonal blocks exactly as such blocks are sensitive to approximation

Model Perplexities

Perplexities on Wiki-40B

19

18

17

16

15

14

512

1k

2k 4k 8k

Context Length

® Softmax

® Polynomial (p=2)
Polynomial (p=4)

® Polynomial (p=8)

® Polysketch (random)

® Polysketch (random + local)

© Polysketch (learned)

© Polysketch (learned + local)

® Performer

15

Training Latencies

Train steps/sec of different mechanisms

5

® Softmax

® FlashAttention
Polysketch (random)

® Polysketch (learned)

/

1

ey

1
il

i

® Polysketch (random + local)

.

RN

[/

® Polysketch (learned + local)

©® Performer (2k features, fast LT)

/

2k 4k 8k 16k 32k
Context Length

16

Conclusions and Future Work

In practice,

1. FlashAttention is an optimized implementation of full softmax attention and is
used heavily

2. HyperAttention on pretrained models seems to reduce quality too much. Fine-
tuning can increase quality but it depends on the hash bucket sizes

3. PolySketchFormer has not been tried on very long contexts. Hyperattention
allows more state to be maintained for long contexts by increasing the number of
heavy entries stored

Recently [Kannan, Bhattacharyya, Kacham, W] use tools from randomized linear algebra
to show for a large class of loss functions, there is a small subset of keys so that any
heavy attention score involves a key from that subset. Still being tested!

