Outline

* Wrapup of Lower Bounds

* Streaming Algorithms
* Heavy Hitters

e LO estimation

Aspects of 1-Way Communication of Index

* Alice hasx €{0,1}"
Bob hasi € [n]
Alice sends a (randomized) message M to Bob
I(M; X|R)=sum,I(M; X | X.,, R)
= sum; |(M; X;| R)
=n-sum, H(X; | M, R)
Fano: H(X; | M, R) < H(J) if Bob can guess X, with probability > 1- 0
CCs(Index) = (M ; X| R) = n(1-H(9))

The same lower bound applies if the protocol is only correct
on average over x and i drawn independently from a uniform
distribution

Distributional Communication Complexity

e (X\)Y) ~pu

* p-distributional complexity D,(f): the minimum communication cost of
a protocol which outputs f(X,Y) with probability 2/3 for (X,Y) ~ u

— Yao’s minimax principle: R(f) = max D,(f)

* 1-way communication: Alice sends a single message M(X) to Bob

Indexing is Universal for Product Distributions
[Kremer, Nisan, Ron]

« Communication matrix A¢ of a Boolean functionf: X X Y — {0,1}
has (x,y)-th entry equal to f(x,y)

max D, (f) = ©(VC — dimension) of A¢
product p

* |Implies areduction from Index is optimal for product distributions

001
100
000
010
001
110

Indexing with Low Error

* Index Problem with 1/3 error probability and 0 error probability both have ()(n)
communication

* Sometimes, want lower bounds in terms of error probability

* Indexing on Large Alphabets:
* Alice has x € {0,1}"0 with wt(x) = n, Bob has i € [n/9]
* Bob wants to decide if x; = 1 with error probability d
[Jayram, W] 1-way communication is Q2(n log(1/d))

Can be used to get an Q(log (%)) bound for norm estimation

« We’ve seen an Q(logn + €2 + log (%)) lower bound for norm estimation

There is an Q(e™2 log%log n) bit lower bound

Beyond Product Distributions

Although R(f) = max D (), it may be that
U

mgx D, (f) > prg}i%ict . D (f), so one often can'

get good lower bounds by looking at product
distributions...

Non-Product Distributions

* Needed for stronger lower bounds

« Example: approximate |x|, up to a multiplicative factor of B in a stream
* Lower bounds for p-norms

_ 9
Gapo (X,Y) ﬁ@'\]ﬁﬂ ;E\U/@
Problem K :@%\L/

x € {0, ..., B y€{0, ..., By

« Promise: [x—y|o < 1Or|x—yle, =B

« Hard distribution non-product

« Q(n/B?) lower bound [Saks, Sun] [Bar-Yossef, Jayram, Kumar, Sivakumar]

Outline

* Wrapup of Lower Bounds

* Streaming Algorithms
* Heavy Hitters

e LO estimation

Heavy Hitter Guarantees

* |, —guarantee

* output a set containing all items j for which |Xj| > Plx|;
* the set should not contain any j with |x| < (¢-¢€) [x]4

* |,—guarantee
* output a set containing all items j for which x.2 > ¢|x|3
* the set should not contain any j with x? < (¢ — €)[x|5

* |, —guarantee can be much stronger than the |, — guarantee
* Suppose x = (\/n, 1,1,1,..,1)
* Item 1is an l,-heavy hitter for constant ¢, €, but not an |,-heavy hitter
2
* If|x;| = dlxl4, thenx? = $?|x|Z = $p2[x[5

Heavy Hitter Intuition

* Suppose you are promised at the end of the stream, x; = n, and x; € {0,1} forj €
{1,2,...,n}withj #i

How would you find the identity i?

Foreachjin{1, 2,3, ..., logn}, letA; C [n] be the set of indices with j-th bit in their
binary representation equal to 0, and B; be the set with j-th bit equal to 1

Compute a; = ZieA]_ X; and by = Ziij x; foreachjin{1, 2, ..., log n}

Read off the identity of item |

Heavy Hitter Intuition Continued

Suppose you are promised at the end of the stream, x; = 100,/n log(n), and x; € {0,1} forj €
{1,2,..,n}withj #i

How would you find the identity i?

Foreachjin{1,2,3,...,logn}, letA; C [n] be the set of indices with j-th bit in their binary
representation equal to 0, and B; be the set with j-th bit equal to 1

Compute a; = ZieA]. o; - Xjand b; = ZiEBj o; - x; foreachjin{1, 2, ..., log n}

Read off the identity of item i?
Additive Chernoff bound implies magnitude of “noise” in a count is at most /n log(n) w.h.p.

Remove assumptions: (1) x; = 100,/n log(n) and (2) and x; € {0,1} forj € {1,2,...,n} withj # i

CountSketch achieves the |—guarantee

* Assign each coordinate i a random sign o; € {-1,1}

* Randomly partition coordinates into B buckets, maintain ¢, = 2,.,;-;X;* 0j in
the j-th bucket

X1 | X2 | X3 |Xg |X5 |Xg |X7 |Xg |Xg|Xig

« Estimate x; as o; - Chi)

Why Does CountSketch Work?

* E[Gich(i)] = Oi Li"h(i)=h(") O Xir = Xj

* Suppose we independently repeat this hashing scheme O(log n) times
* Output the median of the estimates across the log n repetitions

* “Noise” in a bucketis oj * 24 h(ir=h() Oir * Xir

* What is the variance of the noise?

2
|X|2

2
*E [(Gi " i’ #ih(i")=h() Oi’ ‘Xi’) | = B

* So with constant probability, the noise in a bucket is O(| xl2

) in magnitude
* Since the log n repetitions are independent, this ensures that our estimate
OiCn(i) Will equal x; & O(| |2) with probability 1-1/poly(n)

* Hence, we approximate every x; simultaneously up to additive error O(| Xl

Tail Guarantee

%]

VB

CountSketch approximates every x; simultaneously up to additive error O(

But what if X4 is a super large poly(n), and X, = nandx3 = ... =x, = 1?7

We get a pretty bad approximation to x,

Tail Gua]rantee: CountSketch approximates every x; simultaneously up to additive error

X-B
O(| \/%4 %), where x_g 4 is x after zero-ing out its top B/4 coordinates in magnitude

Proof: with probability at least 3/4, in each repetition the top B/4

coordinates of x in magnitude do not land in the same hash bucket as x;
* Do we need a lot of independence for this?

What happens if x is B/4-sparse?

How to Find the Top k Heavy Hitters Quickly

« There are 2! nodes in i-th level of tree Full Binary Tree
» Start at the level with 2k nodes

* Each node corresponds to a subset of [n] of
size n/2' with the same i-bit prefix

* Ini-th level, foreach i, hash to O(k) buckets repeat
O(log k) times. Like CountSketch, but in each bucket
we run an approximation algorithm to the 2-norm

* Intop level our universe has only 2k nodes, so we
find O
top k just by computing estimate for all of them

Main idea: in next level, we only need to consider the

left and right child of each of the k nodes we found at
the nrevioiis level. So onlv 2k « n nodes to consider.

Why Care About the £,-Guarantee?

* |, —guarantee
* output a set containing all items j for which |X]-| > Pplx|;
* the set should not contain any j with |x|; < (¢-g) [x];

* |, —guarantee
 output a set containing all items j for WhICh X% = c|)|x|2
* the set should not contain any j with x (cl) —e)|x|3

* |,—guarantee implies the |, — guarantee
* So why care about the |, — guarantee?

* Anice thing about the l;-guarantee is that it can be solved deterministically!

Deterministic £1 Heavy Hitters

* An s xn matrix Sis e-incoherent if
 forallcolumnsS;, |Si|, =1

« for all pairs of columns §; and §;, |(Si, Sj)| <€
* entries can be specified with O(log n) bits of space

* Compute S - xin a stream using O(s log n) bits of space

* Estimate & = S.'Sx
* X = Z] 1,. n<SlrS)X N |2X1 + maX|<Sl;S >||X|1 = x; + €[x|;

 Can figure out which |x;| = c|)|x|1and which |x;] < (b — €)[x]4

e Butdo e-incoherent matrices exist?

e-lncoherent Matrices

* Consideraprime q=0((logn)/e).Letd=€-q =0(log n)

* Consider n distinct non-zero polynomials p4, ..., p, €ach of degree less than d.
d
*q"—1>n

* Associate p; with i-th column of S

* Lets =q? and group the rows of S into g groups of size q

* Inj-th group, the i-th column has a single non-zero on the p;(j)-th entry

* pig)-th entry is equal to 1/q"/?

* EachcolumnS;has|Si|, =1

* §; and S; each have the same non-zero in the k-th group iff p; (k) = p;(k)

* Number of such groups kis atmostd < eq, so |(Si, Sj)| <€

Outline
* Wrapup of Lower Bounds

* Streaming Algorithms

* Heavy Hitters

e L0 estimation

Estimating the Number of Non-Zero Entries

* |x|o = |{i such that x; # 0}|

How can we output a number Z with (1 — €)Z < |x|y < (1 + €)Z with prob. 9/10?
« Want O((logn)/€?) bits of space

Suppose |x|, = O(Eiz). What can we do in this case?

: : : 1
Use our algorithm for recovering a k-sparse vector from last time, k = O (6—2)
* What is another way?

But what if |x|, > eiz?

Estimating the Number of Non-Zero Entries

. Sugpose we somehow had an estimate Zwith Z < |x|, < 2Z, what could we

* Independently sample each coordinate i with probability p = 100/(Z €?)
* Let Y; be an indicator random variable if coordinate i is sampled

* Lety be the vector restricted to coordinates i forwhichY; = 1

— Zisuch that x;#0 E[Yi] — plXIO =

* E[lylo]
* Var||ylo

- Pr|lylo — Ellylo]| > =
* Use sparse recovery or Cou ntSketch to compute |y|, exactly ~_~
* Output— 5

=

lylo

Zl such that x;#0 Var[Y] < —

100

Var[lYIo]

200

1002

100

€2

1

— 50

But we don’t
know Z...

Estimating the Number of Non-Zero Entries

e GuessZin powers of 2
* Since 0 < |x|y < n, there are O(logn) guesses

* Thei-thguessZ= 2! corresponds to sampling each coordinate with

probability p = min(1, 2110602)

« Sample the coordinates as nested subsets [n] =S, 2S5, 2S5, 2
+Slogn
* Run previous algorithm for each guess

* One of our guesses Z satisfies Z < |x|, < 2Z and we should use that
guess

e But how do we know which one?

Estimating the Number of Non-Zero Entries

3200
e2

e Use the largest guess Z = 2! for which % < lylg <

 If =2 < E[lylo] < =5 then =2 < [ylo < =5> with probability at least 49/50

. If% < E[lylo] < zg’ then |y|, < %With probability at least 49/50

1600

* So with probability 48/50, we choose an i for which 2% < Ellylo] < "

 There are only 4 such indices i, and all 4 of them satisfy |y|, = (1 + €)E[]|y],]
simultaneously with probability 1-4/50. So doesn’t matter which i we choose

* Overall, our success probability is 1-2/50-4/50 > 4/5

What is Our Overall Space Complexity?

logn

* |If we use our k-sparse recovery algorithm fork = O (eiz) then it takes O(——) bits of space in

2

62

log“ n

each of log n levels, so O() total bits of space ignoring random bits

e2

* How much randomness do we need?

* Pairwise independence is enough for Chebyshev’s inequality

* Implement nested sampling by choosing a hash function h: [n] — [n],
checking if firsti bits of h(j) =0

* O(log n) bits of space for the randomness

e Canimproveto O

<log (log(%)+log log n)
€2

) bits. How?

* Just need to know number of non-zero counters, so reduce counters from log n bits to
O(log (%) + loglogn) to bits

Reducing Counter Size

1

62) counters, each of

* In sampling levels that we care about, we have O (
O(log n) bits

logn

* At most O () prime numbers dividing any of these counters

e2

lognloglogn

* Choose arandom primeq=0 () Unlikely that g divides any

counters

€2

* Just maintain our sparse recovery structure mod q, so
1
0 ((loglogn +log(g)

e2

) bits per each of O(log n) sparse recovery instances

