#### **Outline**

Wrapup of Lower Bounds

Streaming Algorithms

Heavy Hitters

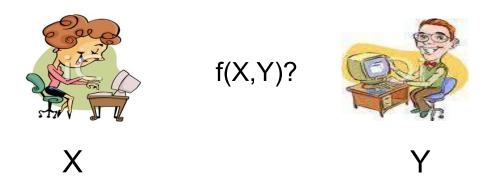
L0 estimation

### Aspects of 1-Way Communication of Index

- Alice has  $x \in \{0,1\}^n$
- Bob has i ∈ [n]
- Alice sends a (randomized) message M to Bob
- $I(M; X | R) = sum_i I(M; X_i | X_{<i}, R)$   $\geq sum_i I(M; X_i | R)$  $= n - sum_i H(X_i | M, R)$
- Fano:  $H(X_i \mid M, R) \le H(\delta)$  if Bob can guess  $X_i$  with probability > 1-  $\delta$
- $CC_{\delta}(Index) \ge I(M; X \mid R) \ge n(1-H(\delta))$

The same lower bound applies if the protocol is only correct on average over x and i drawn independently from a uniform distribution

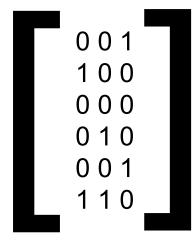
### Distributional Communication Complexity



- $(X,Y) \sim \mu$
- $\mu$ -distributional complexity  $D_{\mu}(f)$ : the minimum communication cost of a protocol which outputs f(X,Y) with probability 2/3 for  $(X,Y) \sim \mu$ 
  - Yao's minimax principle:  $R(f) = \max_{\mu} D_{\mu}(f)$
- 1-way communication: Alice sends a single message M(X) to Bob

# Indexing is Universal for Product Distributions [Kremer, Nisan, Ron]

- Communication matrix  $A_f$  of a Boolean function  $f: X \times Y \to \{0,1\}$  has (x,y)-th entry equal to f(x,y)
- $\max_{\text{product }\mu} D_{\mu}(f) = \Theta(VC \text{dimension}) \text{ of } A_f$
- Implies a reduction from Index is optimal for product distributions



### Indexing with Low Error

- Index Problem with 1/3 error probability and 0 error probability both have  $\Omega(n)$  communication
- Sometimes, want lower bounds in terms of error probability
- Indexing on Large Alphabets:
  - Alice has  $x \in \{0,1\}^{n/\delta}$  with wt(x) = n, Bob has  $i \in [n/\delta]$
  - Bob wants to decide if  $x_i = 1$  with error probability  $\delta$
  - [Jayram, W] 1-way communication is  $\Omega(n \log(1/\delta))$
  - Can be used to get an  $\Omega(\log\left(\frac{1}{\delta}\right))$  bound for norm estimation
  - We've seen an  $\Omega(\log n + \epsilon^{-2} + \log \left(\frac{1}{\delta}\right))$  lower bound for norm estimation
  - There is an  $\Omega(\epsilon^{-2}\log\frac{1}{\delta}\log n)$  bit lower bound

### **Beyond Product Distributions**

```
Although R(f) = \max_{\mu} D_{\mu}(f), it may be that \max_{\mu} D_{\mu}(f) \gg \max_{product \mu} D_{\mu}(f), so one often can't get good lower bounds by looking at product distributions...
```

#### Non-Product Distributions

- Needed for stronger lower bounds
- Example: approximate  $|x|_{\infty}$  up to a multiplicative factor of B in a stream
  - Lower bounds for p-norms

 $Gap_{\infty}(x,y)$ **Problem** 



$$x \in \{0, ..., B\}^n$$
  $y \in \{0, ..., B\}^n$ 



$$y \in \{0, ..., B\}^n$$

- Promise:  $|x y|_{\infty} \le 1$  or  $|x y|_{\infty} \ge B$
- Hard distribution non-product
- $\Omega(n/B^2)$  lower bound [Saks, Sun] [Bar-Yossef, Jayram, Kumar, Sivakumar]

#### **Outline**

Wrapup of Lower Bounds

Streaming Algorithms

Heavy Hitters

L0 estimation

# Heavy Hitter Guarantees

- l<sub>1</sub> guarantee
  - output a set containing all items j for which  $|x_i| \ge \phi |x|_1$
  - the set should not contain any j with  $|x_i| \le (\phi \varepsilon) |x|_1$
- l<sub>2</sub> guarantee
  - output a set containing all items j for which  $x_i^2 \ge \phi |x|_2^2$
  - the set should not contain any j with  $x_i^2 \le (\phi \epsilon)|x|_2^2$
- $l_2$  guarantee can be much stronger than the  $l_1$  guarantee
  - Suppose  $x = (\sqrt{n}, 1, 1, 1, ..., 1)$
  - Item 1 is an  $l_2$ -heavy hitter for constant  $\phi$ ,  $\epsilon$ , but not an  $l_1$ -heavy hitter
  - If  $|x_j| \ge \phi |x|_1$ , then  $x_j^2 \ge \phi^2 |x|_1^2 \ge \phi^2 |x|_2^2$

# **Heavy Hitter Intuition**

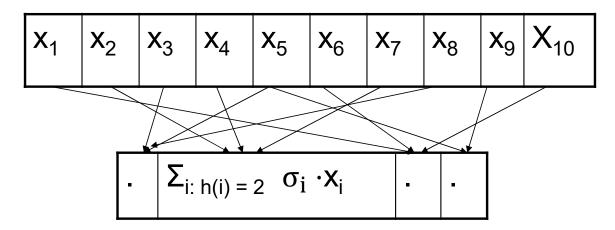
- Suppose you are promised at the end of the stream,  $x_i = n$ , and  $x_j \in \{0,1\}$  for  $j \in \{1,2,...,n\}$  with  $j \neq i$
- How would you find the identity i?
- For each j in {1, 2, 3, ..., log n}, let  $A_j \subset [n]$  be the set of indices with j-th bit in their binary representation equal to 0, and  $B_j$  be the set with j-th bit equal to 1
- Compute  $a_j = \sum_{i \in A_j} x_i$  and  $b_j = \sum_{i \in B_j} x_i$  for each j in {1, 2, ..., log n}
- Read off the identity of item i

# **Heavy Hitter Intuition Continued**

- Suppose you are promised at the end of the stream,  $x_i=100\sqrt{n\log(n)}$ , and  $x_j\in\{0,1\}$  for  $j\in\{1,2,...,n\}$  with  $j\neq i$
- How would you find the identity i?
- For each j in  $\{1, 2, 3, ..., \log n\}$ , let  $A_j \subset [n]$  be the set of indices with j-th bit in their binary representation equal to 0, and  $B_i$  be the set with j-th bit equal to 1
- Compute  $a_j = \sum_{i \in A_j} \sigma_i \cdot x_i$  and  $b_j = \sum_{i \in B_j} \sigma_i \cdot x_i$  for each j in {1, 2, ..., log n}
- Read off the identity of item i?
- Additive Chernoff bound implies magnitude of "noise" in a count is at most  $\sqrt{n \log(n)}$  w.h.p.
- Remove assumptions: (1)  $x_i = 100\sqrt{n \log(n)}$  and (2) and  $x_j \in \{0,1\}$  for  $j \in \{1,2,...,n\}$  with  $j \neq i$

# CountSketch achieves the l<sub>2</sub>-guarantee

- Assign each coordinate i a random sign  $\sigma_i \in \{-1,1\}$
- Randomly partition coordinates into B buckets, maintain  $c_j = \sum_{i: \, h(i) \, = \, j} \, x_i \cdot \sigma_i$  in the j-th bucket



• Estimate  $x_i$  as  $\sigma_i \cdot c_{h(i)}$ 

# Why Does CountSketch Work?

- $E[\sigma_i c_{h(i)}] = \sigma_i \sum_{i':h(i)=h(i')} \sigma_{i'} x_{i'} = x_i$
- Suppose we independently repeat this hashing scheme O(log n) times
- Output the median of the estimates across the log n repetitions
- "Noise" in a bucket is  $\sigma_i \cdot \sum_{i' \neq i, h(i') = h(i)} \sigma_{i'} \cdot x_{i'}$
- What is the variance of the noise?

• 
$$E\left[\left(\sigma_i\cdot \sum_{i'\neq i,h(i')=h(i)}\sigma_{i'}\cdot x_{i'}\right)^2\right] = \frac{|x|_2^2}{B}$$

- So with constant probability, the noise in a bucket is  $O(\frac{|x|_2}{\sqrt{B}})$  in magnitude
- Since the log n repetitions are independent, this ensures that our estimate  $\sigma_i c_{h(i)}$  will equal  $x_i \pm O(\frac{|x|_2}{\sqrt{B}})$  with probability 1-1/poly(n)
- Hence, we approximate every  $x_i$  simultaneously up to additive error  $O(\frac{|\mathbf{x}|_2}{\sqrt{B}})$

#### Tail Guarantee

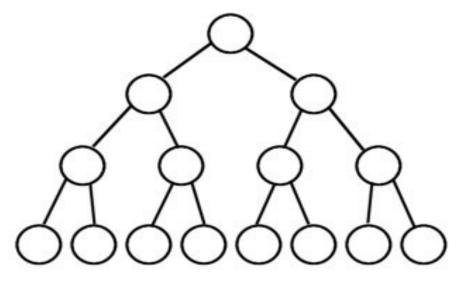
- CountSketch approximates every  $x_i$  simultaneously up to additive error  $O(\frac{|\mathbf{x}|_2}{\sqrt{B}})$
- But what if  $x_1$  is a super large poly(n), and  $x_2 = n$  and  $x_3 = ... = x_n = 1$ ?
- We get a pretty bad approximation to x<sub>2</sub>
- Tail Guarantee: CountSketch approximates every  $x_i$  simultaneously up to additive error  $O(\frac{|x_{-B/4}|_2}{\sqrt{B}})$ , where  $x_{-B/4}$  is x after zero-ing out its top B/4 coordinates in magnitude
- Proof: with probability at least 3/4, in each repetition the top B/4 coordinates of x in magnitude do not land in the same hash bucket as  $x_i$ 
  - Do we need a lot of independence for this?
- What happens if x is B/4-sparse?

# How to Find the Top k Heavy Hitters Quickly

- There are 2<sup>i</sup> nodes in i-th level of tree
  - Start at the level with 2k nodes
- Each node corresponds to a subset of [n] of size n/2<sup>i</sup> with the same i-bit prefix
- In i-th level, for each i, hash to O(k) buckets repeat
  O(log k) times. Like CountSketch, but in each bucket
  we run an approximation algorithm to the 2-norm
- In top level our universe has only 2k nodes, so we find top k just by computing estimate for all of them

Main idea: in next level, we only need to consider the left and right child of each of the k nodes we found at the previous level. So only  $2k \ll n$  nodes to consider.

Full Binary Tree



# Why Care About the $\ell_1$ -Guarantee?

- l<sub>1</sub> guarantee
  - output a set containing all items j for which |x<sub>j</sub>| ≥ φ|x|<sub>1</sub>
    the set should not contain any j with |x|<sub>j</sub> ≤ (φ-ε) |x|<sub>1</sub>
- l<sub>2</sub> guarantee

  - output a set containing all items j for which x<sub>j</sub><sup>2</sup> ≥ φ|x|<sub>2</sub><sup>2</sup>
    the set should not contain any j with x<sub>j</sub><sup>2</sup> ≤ (φ − ε)|x|<sub>2</sub><sup>2</sup>
- $l_2$  guarantee implies the  $l_1$  guarantee
- So why care about the  $l_1$  guarantee?
- A nice thing about the  $l_1$ -guarantee is that it can be solved deterministically!

# Deterministic $\ell_1$ Heavy Hitters

- An s x n matrix S is  $\epsilon$ -incoherent if
  - for all columns  $S_i$ ,  $|S_i|_2 = 1$
  - for all pairs of columns  $S_i$  and  $S_j$ ,  $|\langle S_i, S_j \rangle| \leq \epsilon$
  - entries can be specified with O(log n) bits of space
- Compute  $S \cdot x$  in a stream using  $O(s \log n)$  bits of space
- Estimate  $\widehat{x_i} = S_i^T Sx$ 
  - $\widehat{x}_i = \sum_{j=1,...,n} \langle S_i, S_j \rangle x_j = |S_i|_2^2 x_i \pm \max_{i,j} |\langle S_i, S_j \rangle| |x|_1 = x_i \pm \epsilon |x|_1$
  - Can figure out which  $|x_i| \ge \varphi |x|_1$  and which  $|x_i| \le (\varphi \epsilon)|x|_1$
- But do  $\epsilon$ -incoherent matrices exist?

#### *∈*-Incoherent Matrices

- Consider a prime  $q = \Theta((\log n)/\epsilon)$ . Let  $d = \epsilon \cdot q = O(\log n)$
- Consider n distinct non-zero polynomials  $p_1, ..., p_n$  each of degree less than d.
  - $q^d 1 > n$
- Associate p<sub>i</sub> with i-th column of S
- Let  $s = q^2$  and group the rows of S into q groups of size q
  - In j-th group, the i-th column has a single non-zero on the  $p_i(j)$ -th entry
  - $p_{i(j)}$ -th entry is equal to  $1/q^{1/2}$
- Each column  $S_i$  has  $|S_i|_2 = 1$
- $S_i$  and  $S_j$  each have the same non-zero in the k-th group iff  $p_i(k) = p_j(k)$
- Number of such groups k is at most  $d \le \epsilon q$ , so  $\left| \langle S_i, S_j \rangle \right| \le \epsilon$

#### **Outline**

Wrapup of Lower Bounds

Streaming Algorithms

Heavy Hitters

L0 estimation

- $|x|_0 = |\{i \text{ such that } x_i \neq 0\}|$
- How can we output a number Z with  $(1 \epsilon)Z \le |x|_0 \le (1 + \epsilon)Z$  with prob. 9/10?
  - Want  $O((\log n)/\epsilon^2)$  bits of space
- Suppose  $|x|_0 = O(\frac{1}{\epsilon^2})$ . What can we do in this case?
- Use our algorithm for recovering a k-sparse vector from last time,  $\mathbf{k} = 0 \left( \frac{1}{\epsilon^2} \right)$ 
  - What is another way?
- But what if  $|x|_0 \gg \frac{1}{\epsilon^2}$ ?

- Suppose we somehow had an estimate Z with Z  $\leq$  |x| $_0 \leq$  2Z, what could we do?
- Independently sample each coordinate i with probability  $p = 100/(Z \epsilon^2)$
- Let Y<sub>i</sub> be an indicator random variable if coordinate i is sampled
- Let y be the vector restricted to coordinates i for which  $Y_i = 1$
- $E[|y|_0] = \sum_{i \text{ such that } x_i \neq 0} E[Y_i] = p|x|_0 \ge \frac{100}{\epsilon^2}$
- $Var[|y|_0] = \sum_{i \text{ such that } x_i \neq 0} Var[Y_i] \le \frac{200}{\epsilon^2}$
- $\Pr[||y|_0 E[|y|_0]| > \frac{100}{\epsilon}] \le \frac{Var[|y|_0]\epsilon^2}{100^2} \le \frac{1}{50}$
- Use sparse recovery or CountSketch to compute  $|y|_0$  exactly
- Output  $\frac{|y|_0}{p}$

But we don't know Z...

- Guess Z in powers of 2
- Since  $0 \le |x|_0 \le n$ , there are  $O(\log n)$  guesses
- The i-th guess Z =  $2^i$  corresponds to sampling each coordinate with probability  $p=\min(1,\frac{100}{2^i\,\epsilon^2})$
- Sample the coordinates as nested subsets  $[n] = S_0 \supseteq S_1 \supseteq S_2 \supseteq \cdots S_{\log n}$
- Run previous algorithm for each guess
- One of our guesses Z satisfies  $Z \leq |x|_0 \leq 2Z$  and we should use that guess
- But how do we know which one?

- Use the largest guess  $Z=2^i$  for which  $\frac{400}{\epsilon^2} \leq |y|_0 \leq \frac{3200}{\epsilon^2}$
- If  $\frac{800}{\epsilon^2} \le \mathrm{E}[|\mathbf{y}|_0] \le \frac{1600}{\epsilon^2}$ , then  $\frac{400}{\epsilon^2} \le |\mathbf{y}|_0 \le \frac{3200}{\epsilon^2}$  with probability at least 49/50
- If  $\frac{100}{\epsilon^2} \le \mathrm{E}[|\mathbf{y}|_0] \le \frac{200}{\epsilon^2}$ , then  $|\mathbf{y}|_0 < \frac{400}{\epsilon^2}$  with probability at least 49/50
- So with probability 48/50, we choose an i for which  $\frac{200}{\epsilon^2} \le \mathrm{E}[|\mathbf{y}|_0] \le \frac{1600}{\epsilon^2}$
- There are only 4 such indices i, and all 4 of them satisfy  $|y|_0 = (1 \pm \epsilon) E[|y|_0]$  simultaneously with probability 1-4/50. So doesn't matter which i we choose
- Overall, our success probability is 1-2/50-4/50 > 4/5

# What is Our Overall Space Complexity?

- If we use our k-sparse recovery algorithm for k=0  $\left(\frac{1}{\epsilon^2}\right)$ , then it takes  $0(\frac{\log n}{\epsilon^2})$  bits of space in each of log n levels, so  $0(\frac{\log^2 n}{\epsilon^2})$  total bits of space ignoring random bits
  - How much randomness do we need?
  - Pairwise independence is enough for Chebyshev's inequality
  - Implement nested sampling by choosing a hash function  $h: [n] \to [n]$ , checking if first i bits of h(j) = 0
  - O(log n) bits of space for the randomness
- Can improve to  $O\left(\frac{\log (\log\left(\frac{1}{\epsilon}\right) + \log\log n)}{\epsilon^2}\right)$  bits. How?
- Just need to know number of non-zero counters, so reduce counters from log n bits to  $O(\log(\frac{1}{\epsilon}) + \log\log n)$  to bits

# Reducing Counter Size

- In sampling levels that we care about, we have  $O\left(\frac{1}{\epsilon^2}\right)$  counters, each of  $O(\log n)$  bits
- At most  $O\left(\frac{\log n}{\epsilon^2}\right)$  prime numbers dividing any of these counters
- Choose a random prime q =  $O\left(\frac{\log n \log \log n}{\epsilon^2}\right)$ . Unlikely that q divides any counters
- Just maintain our sparse recovery structure mod q, so  $O\left(\frac{(\log\log n + \log\left(\frac{1}{\epsilon}\right)}{\epsilon^2}\right) \text{ bits per each of O(log n) sparse recovery instances}$