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Aspects of 1-Way Communication of Index
• Alice has x {0,1}n

• Bob has i [n]
• Alice sends a (randomized) message M to Bob
• I(M ; X | R) = sumi I(M ; Xi | X< i, R)

sumi I(M; Xi | R)
= n – sumi H(Xi | M, R)

• Fano: H(Xi | M, R) H(δ) if Bob can guess Xi with probability > 1- δ
• CCδ(Index) I(M ; X | R) n(1-H(δ))

The same lower bound applies if the protocol is only correct 
on average over x and i drawn independently from a uniform 

distribution



Distributional Communication Complexity

X Y

f(X,Y)?



Indexing is Universal for Product Distributions 
[Kremer, Nisan, Ron]

0 0 1 
1 0 0 
0 0 0 
0 1 0
0 0 1
1 1 0

• Communication matrix ୤ of a Boolean function 
has (x,y)-th entry equal to f(x,y)

•
୮୰୭ୢ୳ୡ୲ ஜ

ஜ of ୤

• Implies a reduction from Index is optimal for product distributions



Indexing with Low Error
• Index Problem with 1/3 error probability and 0 error probability both have (n) 

communication

• Sometimes, want lower bounds in terms of error probability

• Indexing on Large Alphabets:
• Alice has x {0,1}n/δ with wt(x) = n, Bob has i [n/δ]
• Bob wants to decide if xi = 1 with error probability δ
• [Jayram, W] 1-way communication is (n log(1/δ))

• Can be used to get an ଵ

ஔ
bound for norm estimation

• We’ve seen an ିଶ ଵ

ஔ
lower bound for norm estimation

• There is an ିଶ ଵ

ஔ
bit lower bound



Beyond Product Distributions



Non-Product Distributions
• Needed for stronger lower bounds

• Example: approximate x ஶ up to a multiplicative factor of B in a stream
• Lower bounds for p-norms

• Promise: x − y ஶ ≤ 1 or x − y ஶ ≥ B

• Hard distribution non-product

• (n/B2) lower bound [Saks, Sun] [Bar-Yossef, Jayram, Kumar, Sivakumar]

x {0, …, B}n y {0, …, B}n

ஶ (x,y)
Problem
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• l1 – guarantee
• output a set containing all items j for which ୨ ଵ

• the set should not contain any j with |xj| (φ-ε) ଵ

• l2 – guarantee
• output a set containing all items j for which j 

2
ଶ
ଶ

• the set should not contain any j with ୨
ଶ

ଶ
ଶ

• l2 – guarantee can be much stronger than the l1 – guarantee
• Suppose x = ( , 1, 1, 1, …, 1)
• Item 1 is an l2-heavy hitter for constant φ, ε, but not an l1-heavy hitter
• If ୨ ଵ, then ୨

ଶ ଶ
ଵ
ଶ ଶ

ଶ
ଶ

Heavy Hitter Guarantees



• Suppose you are promised at the end of the stream, ୧ , and ୨ for 

• How would you find the identity i?

• For each j in {1, 2, 3, …, log n}, let ୨ be the set of indices with j-th bit in their 
binary representation equal to 0, and ୨ be the set with j-th bit equal to 1

• Compute ୨ ୧୧∈୅ౠ
and ୨ ୧୧∈୆ౠ

for each j in {1, 2, …, log n}

• Read off the identity of item i

Heavy Hitter Intuition



Heavy Hitter Intuition Continued
• Suppose you are promised at the end of the stream, x୧ = 100 n log(n), and x୨ ∈ {0,1} for j ∈

1, 2, … , n  with j ≠ i

• How would you find the identity i?

• For each j in {1, 2, 3, …, log n}, let A୨ ⊂ [n] be the set of indices with j-th bit in their binary 
representation equal to 0, and B୨ be the set with j-th bit equal to 1

• Compute a୨ = ∑ σ୧ ⋅ x୧୧∈୅ౠ
and b୨ = ∑ σ୧ ⋅ x୧୧∈୆ౠ

for each j in {1, 2, …, log n}

• Read off the identity of item i?

• Additive Chernoff bound implies magnitude of “noise” in a count is at most n log(n) w.h.p.

• Remove assumptions: (1) x୧ = 100 n log(n) and (2) and x୨ ∈ {0,1} for j ∈ 1, 2, … , n  with j ≠ i



CountSketch achieves the l2–guarantee

• Assign each coordinate i a random sign ୧ {-1,1}

• Randomly partition coordinates into B buckets, maintain cj =  Σi: h(i) = j xi ୧ in 
the j-th bucket

..Σi: h(i) = 2 ୧ xi.

X10x9x8x7x6x5x4x3x2x1

• Estimate xi as ୧ ch(i) 



Why Does CountSketch Work?

• ୧ ୦ ୧ ୧ ୧ᇱ ୧ᇱ୧ᇲ:୦ ୧ ୀ୦(୧ᇲ) ୧

• Suppose we independently repeat this hashing scheme O(log n) times 
• Output the median of the estimates across the log n repetitions
• “Noise” in a bucket is ୧ ୧ᇱ ୧ᇱ୧ᇲஷ୧,୦ ୧ᇲ ୀ୦(୧)

• What is the variance of the noise?

• ୧ ୧ᇲ ୧ᇲ୧ᇲஷ୧,୦ ୧ᇲ ୀ୦ ୧

ଶ ୶ మ
మ

୆

• So with constant probability, the noise in a bucket is ୶ మ

√୆
in magnitude

• Since the log n repetitions are independent, this ensures that our estimate 

୧ ୦ ୧ will equal ୧
୶ మ

୆
with probability 1-1/poly(n)

• Hence, we approximate every ௜ simultaneously up to additive error ୶ మ

୆



• CountSketch approximates every ௜ simultaneously up to additive error ୶ మ

୆

• But what if ଵ is a super large poly(n), and ଶ and ଷ ୬

• We get a pretty bad approximation to ଶ

• Tail Guarantee: CountSketch approximates every ௜ simultaneously up to additive error 
୶షా/ర మ

୆
, where ି୆/ସ is x after zero-ing out its top B/4 coordinates in magnitude

• Proof: with probability at least , in each repetition the top B/4 
coordinates of x in magnitude do not land in the same hash bucket as ୧

• Do we need a lot of independence for this?

• What happens if x is B/4-sparse?

Tail Guarantee



How to Find the Top k Heavy Hitters Quickly
• There are 2୧ nodes in i-th level of tree

• Start at the level with 2k nodes

• Each node corresponds to a subset of [n] of 
size n/2୧ with the same i-bit prefix

• In i-th level, for each i, hash to O(k) buckets repeat 
O(log k) times. Like CountSketch, but in each bucket
we run an approximation algorithm to the 2-norm

• In top level our universe has only 2k nodes, so we 
find
top k just by computing estimate for all of them

Main idea: in next level, we only need to consider the
left and right child of each of the k nodes we found at
the previous level. So only 2k ≪ n nodes to consider.



Why Care About the -Guarantee? 

• l1 – guarantee
• output a set containing all items j for which ୨ ଵ
• the set should not contain any j with |x|j (φ-ε) ଵ

• l2 – guarantee
• output a set containing all items j for which j 

2
ଶ
ଶ

• the set should not contain any j with ୨
ଶ

ଶ
ଶ

• l2 – guarantee implies the l1 – guarantee

• So why care about the l1 – guarantee?

• A nice thing about the ଵ-guarantee is that it can be solved deterministically!



Deterministic Heavy Hitters

• An s x n matrix S is -incoherent if 
• for all columns ୧, ୧ ଶ

• for all pairs of columns ୧ and ୨, ୧ ୨

• entries can be specified with O(log n) bits of space

• Compute in a stream using O(s log n) bits of space

• Estimate ୧ ୧
୘

• ୧ ୧ ୨୨ୀଵ,…,୬ ୨ ୧ ଶ
ଶ

୧
୧,୨

୧ ୨ ଵ ୧ ଵ

• Can figure out which ୧ ଵand which ୧ ଵ

• But do -incoherent matrices exist?



-Incoherent Matrices
• Consider a prime q = Θ((log n)/ϵ). Let d = ϵ ⋅ q =O(log n) 

• Consider n distinct non-zero polynomials pଵ, … , p୬ each of degree less than d.
• qୢ − 1 > n 

• Associate p୧ with i-th column of S

• Let s = qଶ and group the rows of S into q groups of size q
• In j-th group, the i-th column has a single non-zero on the p୧(j)-th entry
• p୧ ୨ -th entry is equal to 1/qଵ/ଶ 

• Each column S୧ has S୧ ଶ = 1

• S୧ and S୨ each have the same non-zero in the k-th group iff p୧ k = p୨(k)

• Number of such groups k is at most d ≤ ϵq,  so S୧, S୨ ≤ ϵ
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• ଴ ୧

• How can we output a number Z with ଴ with prob. 9/10?
• Want ଶ bits of space

• Suppose ଴
ଵ

஫మ What can we do in this case?

• Use our algorithm for recovering a k-sparse vector from last time, ଵ

஫మ

• What is another way?

• But what if ଴
ଵ

஫మ

Estimating the Number of Non-Zero Entries



• Suppose we somehow had an estimate Z with ଴ , what could we 
do?

• Independently sample each coordinate i with probability ଶ

• Let ୧ be an indicator random variable if coordinate i is sampled
• Let y be the vector restricted to coordinates i for which ୧

• ଴ ୧୧ ୱ୳ୡ୦ ୲୦ୟ୲ ୶౟ஷ଴ ଴
ଵ଴଴

஫మ

• ଴ ୧୧ ୱ୳ୡ୦ ୲୦ୟ୲ ୶౟ஷ଴
ଶ଴଴

஫మ

• ଴ ଴
ଵ଴଴

஫

୚ୟ୰ ୷ బ ஫మ

ଵ଴଴మ

ଵ

ହ଴

• Use sparse recovery or CountSketch to compute ଴ exactly
• Output ୷ బ

୮

Estimating the Number of Non-Zero Entries

But we don’t 
know Z…



• Guess Z in powers of 2
• Since ଴ , there are guesses
• The i-th guess Z = ୧ corresponds to sampling each coordinate with 

probability ଵ଴଴

ଶ౟ ஫మ

• Sample the coordinates as nested subsets ଴ ଵ ଶ

୪୭୥ ୬

• Run previous algorithm for each guess
• One of our guesses Z satisfies ଴ and we should use that 

guess

• But how do we know which one?

Estimating the Number of Non-Zero Entries



Estimating the Number of Non-Zero Entries

• Use the largest guess ୧ for which ସ଴଴

஫మ ଴
ଷଶ଴଴

஫మ

• If ଼଴଴

஫మ ଴
ଵ଺଴଴

஫మ , then  ସ଴଴

஫మ ଴
ଷଶ଴଴

஫మ with probability at least 49/50

• If ଵ଴଴

஫మ ଴
ଶ଴଴

஫మ , then ଴
ସ଴଴

஫మ with probability at least 49/50

• So with probability 48/50, we choose an i for which ଶ଴଴

஫మ ଴
ଵ଺଴଴

஫మ

• There are only 4 such indices i, and all 4 of them satisfy ଴ ଴
simultaneously with probability 1-4/50. So doesn’t matter which i we choose

• Overall, our success probability is 1-2/50-4/50 > 4/5



What is Our Overall Space Complexity?

• If we use our k-sparse recovery algorithm for ଵ

஫మ , then it takes ୪୭୥ ୬

஫మ bits of space in 

each of log n levels, so ୪୭୥మ ୬

஫మ total bits of space ignoring random bits
• How much randomness do we need?
• Pairwise independence is enough for Chebyshev’s inequality
• Implement nested sampling by choosing a hash function , 

checking if first i bits of h(j) = 0
• O(log n) bits of space for the randomness

• Can improve to 
୪୭୥  (୪୭୥

భ

ಣ
ା୪୭୥ ୪୭୥ ୬)

஫మ bits. How?

• Just need to know number of non-zero counters, so reduce counters from log n bits to 
ଵ

஫
to bits



Reducing Counter Size

• In sampling levels that we care about, we have ଵ

஫మ counters, each of 
O(log n) bits

• At most ୪୭୥ ୬

஫మ prime numbers dividing any of these counters

• Choose a random prime q = ୪୭୥ ୬ ୪୭୥ ୪୭୥ ௡

஫మ . Unlikely that q divides any 
counters

• Just maintain our sparse recovery structure mod q, so 
(୪୭୥ ୪୭୥ ୬ ା୪୭୥

భ

ച

஫మ bits per each of O(log n) sparse recovery instances


