Outline

- 1. Information Theory Concepts
- 2. An Example Communication Lower Bound Randomized 1-way Communication Complexity of the INDEX problem

Discrete Distributions

- Consider distributions p over a finite support of size n:
 - $p = (p_1, p_2, p_3, ..., p_n)$
 - $p_i \in [0,1]$ for all i
 - $\sum_i p_i = 1$
- X is a random variable with distribution p if $Pr[X = i] = p_i$

Entropy

- Let X be a random variable with distribution p on n items
- (Entropy) $H(X) = \sum_i p_i \log_2 (1/p_i)$
 - If $p_i = 0$ then $p_i \log_2\left(\frac{1}{p_i}\right) = 0$
 - $H(X) \leq \log_2 n$. Equality holds when $p_i = \frac{1}{n}$ for all i.
 - Entropy measures "uncertainty" of X.
- (Binary Input) If B is a bit with bias p, then H(B) = $p \log_2 \frac{1}{p} + (1-p) \log_2 \frac{1}{1-p}$

(symmetric)

Conditional and Joint Entropy

- Let X and Y be random variables
- (Conditional Entropy) $H(X | Y) = \sum_{y} H(X | Y = y) \Pr[Y = y]$
- (Joint Entropy)

 $H(X, Y) = \sum_{x,y} Pr[(X,Y) = (x,y)] \log(1/Pr[(X,Y) = (x,y)])$

Chain Rule for Entropy

• (Chain Rule) H(X,Y) = H(X) + H(Y | X)

• Proof:

$$H(X,Y) = \sum_{x,y} \Pr[(X,Y) = (x,y)] \log\left(\frac{1}{\Pr((X,Y)=(x,y))}\right)$$

$$= \sum_{x,y} \Pr[X = x] \Pr[Y = y | X = x] \log\left(\frac{1}{\Pr(X=x) \Pr(Y=y | X=x)}\right)$$

$$= \sum_{x,y} \Pr[X = x] \Pr[Y = y | X = x] (\log\left(\frac{1}{\Pr[X=x]}\right) + \log(\frac{1}{\Pr[Y=y | X=x]}))$$

= H(X) + H(Y | X)

Conditioning Cannot Increase Entropy

• Let X and Y be random variables. Then $H(X|Y) \le H(X)$.

• To prove this, we need Jensen's inequality:

Let f be a continuous, concave function, and let $p_1, ..., p_n$ be non-negative reals that sum to 1. For any $x_1, ..., x_n$,

$$\sum_{i=1,\dots,n}\,p_if(x_i)\leq f(\sum_{i=1,\dots,n}p_ix_i)$$

• Recall that f is concave if $f\left(\frac{a+b}{2}\right) \ge \frac{f(a)}{2} + \frac{f(b)}{2}$ and $f(x) = \log x$ is concave

Conditioning Cannot Increase Entropy

• Proof:

$$H(X | Y) - H(X) = \sum_{xy} \Pr[Y = y] \Pr[X = x | Y = y] \log(\frac{1}{\Pr[X = x | Y = y]})$$

- $\sum_{x} \Pr[X = x] \log(\frac{1}{\Pr[X = x]}) \sum_{y} \Pr[Y = y | X = x]$
= $\sum_{x,y} \Pr[X = x, Y = y] \log(\frac{\Pr[X = x]}{\Pr[X = x | Y = y]})$
= $\sum_{x,y} \Pr[X = x, Y = y] \log(\frac{\Pr[X = x] \Pr[Y = y]}{\Pr[(X,Y) = (x,y)]})$
 $\leq \log(\sum_{x,y} \Pr[X = x, Y = y] \cdot \frac{\Pr[X = x] \Pr[Y = y]}{\Pr[(X,Y) = (x,y)]})$
= 0

where the inequality follows by Jensen's inequality.

If X and Y are independent H(X | Y) = H(X).

Mutual Information

(Mutual Information) I(X ; Y) = H(X) – H(X | Y)
 = H(Y) – H(Y | X)
 = I(Y ; X)

Note: I(X ; X) = H(X) - H(X | X) = H(X)

(Conditional Mutual Information)
 I(X ; Y | Z) = H(X | Z) – H(X | Y, Z)

Is $I(X; Y | Z) \ge I(X; Y)$? Or is $I(X; Y | Z) \le I(X; Y)$? Neither!

Mutual Information

- Claim: For certain X, Y, Z, we can have $I(X ; Y | Z) \leq I(X ; Y)$
- Consider X = Y = Z
- Then,
 - I(X; Y | Z) = H(X | Z) H(X | Y, Z) = 0 0 = 0
 - I(X;Y) = H(X) H(X|Y) = H(X) 0 = H(X)
- Intuitively, Y only reveals information that Z has already revealed, and we are conditioning on Z

Mutual Information

- Claim: For certain X, Y, Z, we can have $I(X ; Y | Z) \ge I(X ; Y)$
- Consider $X = Y + Z \mod 2$, where X and Y are uniform in $\{0,1\}$
- Then,
 - I(X; Y | Z) = H(X | Z) H(X | Y, Z) = 1 0 = 1
 - I(X;Y) = H(X) H(X|Y) = 1 1 = 0
- Intuitively, Y only reveals useful information about X after also conditioning on Z

Chain Rule for Mutual Information

• I(X, Y; Z) = I(X; Z) + I(Y; Z | X)

• Proof:
$$I(X, Y ; Z) = H(X, Y) - H(X, Y | Z)$$

= $H(X) + H(Y | X) - H(X | Z) - H(Y | X, Z)$
= $I(X ; Z) + I(Y; Z | X)$

By induction, $I(X_1, ..., X_n; Z) = \sum_i I(X_i; Z | X_1, ..., X_{\{i-1\}})$

Fano's Inequality

• For any estimator X': X -> Y -> X' with $P_e = \Pr[X' \neq X]$, we have $H(X | Y) \le H(P_e) + P_e \cdot \log(|X| - 1)$

Here X -> Y -> X' is a Markov Chain, meaning X' and X are independent given Y.

"Past and future are conditionally independent given the present"

To prove Fano's Inequality, we need the data processing inequality

Data Processing Inequality

- Suppose X -> Y -> Z is a Markov Chain. Then, $I(X;Y) \ge I(X;Z)$
- That is, no clever combination of the data can improve estimation
- I(X; Y, Z) = I(X; Z) + I(X; Y | Z) = I(X; Y) + I(X; Z | Y)
- So, it suffices to show I(X ; Z | Y) = 0
- I(X ; Z | Y) = H(X | Y) H(X | Y, Z)
- But given Y, then X and Z are independent, so H(X | Y, Z) = H(X | Y).
- Data Processing Inequality implies $H(X | Y) \le H(X | Z)$

Proof of Fano's Inequality

• For any estimator X' such that X-> Y -> X' with $P_e = \Pr[X \neq X']$, we have $H(X | Y) \leq H(P_e) + P_e(\log_2|X| - 1)$.

Proof: Let E = 1 if X' is not equal to X, and E = 0 otherwise. H(E, X | X') = H(X | X') + H(E | X, X') = H(X | X') $H(E, X | X') = H(E | X') + H(X | E, X') \le H(P_e) + H(X | E, X')$ But H(X | E, X') = Pr(E = 0)H(X | X', E = 0) + Pr(E = 1)H(X | X', E = 1) $\le (1 - P_e) \cdot 0 + P_e \cdot \log_2(|X| - 1)$ Combining the above, H(X | X') $\le H(P_e) + P_e \cdot \log_2(|X| - 1)$ By Data Processing, H(X | Y) $\le H(X | X') \le H(P_e) + P_e \cdot \log_2(|X| - 1)$

Tightness of Fano's Inequality

- Suppose the distribution p of X satisfies $p_1 \ge p_2 \ge ... \ge p_n$
- Suppose Y is a constant, so I(X ; Y) = H(X) H(X | Y) = 0.
- Best predictor X' of X is X = 1.
- $P_e = \Pr[X' \neq X] = 1 p_1$
- $H(X | Y) \le H(p_1) + (1 p_1) \log_2(n 1)$ predicted by Fano's inequality
- But H(X) = H(X | Y) and if $p_2 = p_3 = \dots = p_n = \frac{1-p_1}{n-1}$ the inequality is tight

Tightness of Fano's Inequality

• For X from distribution
$$(p_1, \frac{1-p_1}{n-1}, \dots, \frac{1-p_1}{n-1})$$

•
$$H(X) = \sum_{i} p_{i} \log\left(\frac{1}{p_{i}}\right)$$

= $p_{1} \log\left(\frac{1}{p_{1}}\right) + \sum_{i>1} \frac{1-p_{1}}{n-1} \log\left(\frac{n-1}{1-p_{1}}\right)$
= $p_{1} \log\left(\frac{1}{p_{1}}\right) + (1-p_{1}) \log\left(\frac{1}{1-p_{1}}\right) + (1-p_{1}) \log(n-1)$
= $H(p_{1}) + (1-p_{1}) \log(n-1)$

Talk Outline

- 1. Information Theory Concepts
- 2. An Example Communication Lower Bound Randomized 1-way Communication Complexity of the INDEX problem

Randomized 1-Way Communication Complexity

- Alice sends a single message M to Bob
- Bob, given M and j, should output x_i with probability at least 2/3
- Note: The probability is over the coin tosses, not inputs
- Prove that for some inputs and coin tosses, M must be $\Omega(n)$ bits long...

1-Way Communication Complexity of Index

- Consider a uniform distribution μ on X
- Alice sends a single message M to Bob
- We can think of Bob's output as a guess X'_i to X_i

• For all j,
$$\Pr\left[X'_j = X_j\right] \ge \frac{2}{3}$$

• By Fano's inequality, for all j, $H(X_j | M) \le H(\frac{2}{3}) + \frac{1}{3}(\log_2 2 - 1) = H(\frac{1}{3})$

1-Way Communication of Index Continued

- Consider the mutual information I(M ; X)
- By the chain rule,

 $I(X; M) = \Sigma_i I(X_i; M | X_{< i})$

 $= \Sigma_{i} H(X_{i} | X_{< i}) - H(X_{i} | M , X_{< i})$

- Since the coordinates of X are independent bits, $H(X_i | X_{< i}) = H(X_i) = 1$.
- Since conditioning cannot increase entropy,

 $H(X_i \mid M, X_{< i}) \leq H(X_i \mid M)$

So, $I(X; M) \ge n - \sum_{i} H(X_{i}|M) \ge n - H\left(\frac{1}{3}\right)n$ So, $|M| \ge H(M) \ge I(X; M) = \Omega(n)$

Typical Communication Reduction

 $a \in \{0,1\}^n$ Create stream s(a)

 $b \in \{0,1\}^n$ Create stream s(b)

Lower Bound Technique

- 1. Run Streaming Alg on s(a), transmit state of Alg(s(a)) to Bob
- 2. Bob computes Alg(s(a), s(b))

3. If Bob solves g(a,b), space complexity of Alg at least the 1-way communication complexity of g

Example: Distinct Elements

- Given a₁, ..., a_m in [n], how many *distinct* numbers are there?
- Index problem:
 - Alice has a bit string x in {0, 1}ⁿ
 - Bob has an index i in [n]
 - Bob wants to know if $x_i = 1$
- Reduction:
 - $s(a) = i_1, ..., i_r$, where i_j appears if and only if $x_{i_j} = 1$
 - s(b) = i
 - If Alg(s(a), s(b)) = Alg(s(a))+1 then $x_i = 0$, otherwise $x_i = 1$
- Space complexity of Alg at least the 1-way communication complexity of Index

Strengthening Index: Augmented Indexing

- Augmented-Index problem:
 - Alice has $x \in \{0, 1\}^n$
 - Bob has $i \in [n]$, and $x_1, ..., x_{i-1}$
 - Bob wants to learn x_i
- Similar proof shows $\Omega(n)$ bound
- $I(M; X) = sum_i I(M; X_i | X_{< i})$ = n - sum_i H(X_i | M, X_{< i})
- By Fano's inequality, $H(X_i \mid M, X_{< i}) \le H(\delta)$ if Bob can predict X_i with probability ≥ 1 δ from M, $X_{< i}$
- $CC_{\delta}(Augmented-Index) \ge I(M; X) \ge n(1-H(\delta))$

Log n Bit Lower Bound for Estimating Norms

- Alice has $x \in \{0,1\}^{\log n}$ as an input to Augmented Index
- She creates a vector v with a single coordinate equal to $\sum_{j} 10^{j} x_{j}$
- Alice sends to Bob the state of the data stream algorithm after feeding in the input v
- Bob has i in [log n] and $x_{i+1}, x_{i+2}, \ldots, x_{log\,n}$
- Bob creates vector w = $\sum_{j>i} 10^j x_j$
- Bob feeds –w into the state of the algorithm
- If the output of the streaming algorithm is at least $10^i/2$, guess $x_i = 1$, otherwise guess $x_i = 0$

$\frac{1}{\epsilon^2}$ Bit Lower Bound for Estimating Norms

 $x \in \{0,1\}^n$

 $y \in \{0,1\}^n$

- Gap Hamming Problem: Hamming distance $\Delta(x,y) > n/2 + 2\epsilon n$ or $\Delta(x,y) < n/2 + \epsilon n$
- Lower bound of $\Omega(\epsilon^{-2})$ for randomized 1-way communication [Indyk, W], [W], [Jayram, Kumar, Sivakumar]
- Gives $\Omega(\epsilon^{-2})$ bit lower bound for approximating any norm
- Same for 2-way communication [Chakrabarti, Regev]

Gap-Hamming From Index [JKS]

Public coin = r^1 , ..., r^t , each in $\{0,1\}^t$

 $E[\Delta(a,b)] = t/2 + x_i \cdot t^{1/2}$