Outline

1. Information Theory Concepts
2. An Example Communication Lower Bound - Randomized 1-way Communication Complexity of the INDEX problem

Discrete Distributions

- Consider distributions p over a finite support of size n :
- $\mathrm{p}=\left(p_{1}, p_{2}, p_{3}, \ldots, p_{n}\right)$
- $p_{i} \in[0,1]$ for all i
- $\sum_{i} p_{i}=1$
- X is a random variable with distribution p if $\operatorname{Pr}[X=i]=p_{i}$

Entropy

- Let X be a random variable with distribution p on n items
- (Entropy) $H(X)=\sum_{i} p_{i} \log _{2}\left(1 / p_{i}\right)$
- If $p_{i}=0$ then $p_{i} \log _{2}\left(\frac{1}{p_{i}}\right)=0$
- $H(X) \leq \log _{2} n$. Equality holds when $p_{i}=\frac{1}{n}$ for all i.
- Entropy measures "uncertainty" of X.

- (Binary Input) If B is a bit with bias p, then

$$
\mathrm{H}(\mathrm{~B})=p \log _{2} \frac{1}{p}+(1-p) \log _{2} \frac{1}{1-p}
$$

Conditional and Joint Entropy

- Let X and Y be random variables
- (Conditional Entropy)

$$
H(X \mid Y)=\sum_{y} \mathrm{H}(\mathrm{X} \mid \mathrm{Y}=\mathrm{y}) \operatorname{Pr}[Y=y]
$$

- (Joint Entropy)

$$
\mathrm{H}(\mathrm{X}, \mathrm{Y})=\sum_{x, y} \operatorname{Pr}[(\mathrm{X}, \mathrm{Y})=(\mathrm{x}, \mathrm{y})] \log (1 / \operatorname{Pr}[(\mathrm{X}, \mathrm{Y})=(\mathrm{x}, \mathrm{y})])
$$

Chain Rule for Entropy

- (Chain Rule) $H(X, Y)=H(X)+H(Y \mid X)$
- Proof:
$\mathrm{H}(\mathrm{X}, \mathrm{Y})=\sum_{x, y} \operatorname{Pr}[(X, Y)=(x, y)] \log \left(\frac{1}{\operatorname{Pr}((X, Y)=(x, y))}\right)$
$=\sum_{x, y} \operatorname{Pr}[X=x] \operatorname{Pr}[Y=y \mid X=x] \log \left(\frac{1}{\operatorname{Pr}(X=x) \operatorname{Pr}(Y=y \mid X=x)}\right)$
$=\sum_{x, y} \operatorname{Pr}[X=x] \operatorname{Pr}[Y=y \mid X=x]\left(\log \left(\frac{1}{\operatorname{Pr}(X=x)}\right)+\log \left(\frac{1}{\operatorname{Pr}[\mathrm{Y}=\mathrm{y} \mid \mathrm{X}=\mathrm{x}]}\right)\right)$
$=H(X)+H(Y \mid X)$

Conditioning Cannot Increase Entropy

- Let X and Y be random variables. Then $H(X \mid Y) \leq H(X)$.
- To prove this, we need Jensen's inequality:

Let f be a continuous, concave function, and let p_{1}, \ldots, p_{n} be non-negative reals that sum to 1 . For any $\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}$,

$$
\sum_{\mathrm{i}=1, \ldots, \mathrm{n}} \mathrm{p}_{\mathrm{i}} \mathrm{f}\left(\mathrm{x}_{\mathrm{i}}\right) \leq \mathrm{f}\left(\sum_{\mathrm{i}=1, \ldots, \mathrm{n}} \mathrm{p}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}\right)
$$

- Recall that f is concave if $f\left(\frac{a+b}{2}\right) \geq \frac{f(a)}{2}+\frac{f(b)}{2}$ and $f(x)=\log x$ is concave

Conditioning Cannot Increase Entropy

- Proof:

$$
\begin{aligned}
H(X \mid Y)-H(X) & =\sum_{x y} \operatorname{Pr}[Y=y] \operatorname{Pr}[X=x \mid Y=y] \log \left(\frac{1}{\operatorname{Pr}[X=x \mid Y=y]}\right) \\
& -\sum_{x} \operatorname{Pr}[X=x] \log \left(\frac{1}{\operatorname{Pr}[X=x]}\right) \sum_{y} \operatorname{Pr}[Y=y \mid X=x] \\
& =\sum_{x, y} \operatorname{Pr}[X=x, Y=y] \log \left(\frac{\operatorname{Pr}[X=x]}{\operatorname{Pr}[X|x| Y=y]}\right) \\
& =\sum_{x, y} \operatorname{Pr}[X=x, Y=y] \log \left(\frac{\operatorname{Pr}[X=x] \operatorname{Pr}[Y=y]}{\operatorname{Pr}[(X, Y)=(x, y)]}\right) \\
& \leq \log \left(\sum_{x, y} \operatorname{Pr}[X=x, Y=y] \cdot \frac{\operatorname{Pr}[X=x] \operatorname{Pr}[Y=y]}{\operatorname{Pr}[(X, Y)=(x, y)]}\right) \\
& =0
\end{aligned}
$$

where the inequality follows by Jensen's inequality.
If X and Y are independent $H(X \mid Y)=H(X)$.

Mutual Information

- (Mutual Information) $I(X ; Y)=H(X)-H(X \mid Y)$

$$
\begin{aligned}
& =H(Y)-H(Y \mid X) \\
& =I(Y ; X)
\end{aligned}
$$

Note: $\mathrm{I}(\mathrm{X} ; \mathrm{X})=\mathrm{H}(\mathrm{X})-\mathrm{H}(\mathrm{X} \mid \mathrm{X})=\mathrm{H}(\mathrm{X})$

- (Conditional Mutual Information)

$$
\mathrm{I}(\mathrm{X} ; \mathrm{Y} \mid \mathrm{Z})=\mathrm{H}(\mathrm{X} \mid \mathrm{Z})-\mathrm{H}(\mathrm{X} \mid \mathrm{Y}, \mathrm{Z})
$$

$$
\text { Is } \|(X ; Y \mid Z) \geq I(X ; Y) \text { ? Or is } \|(X ; Y \mid Z) \leq I(X ; Y) \text { ? }
$$

Neither!

Mutual Information

- Claim: For certain X, Y, Z, we can have $I(X ; Y \mid Z) \leq I(X ; Y)$
- Consider $\mathrm{X}=\mathrm{Y}=\mathrm{Z}$
- Then,
- $\mathrm{I}(\mathrm{X} ; \mathrm{Y} \mid \mathrm{Z})=\mathrm{H}(\mathrm{X} \mid \mathrm{Z})-\mathrm{H}(\mathrm{X} \mid \mathrm{Y}, \mathrm{Z})=0-0=0$
- $\mathrm{I}(\mathrm{X} ; \mathrm{Y})=\mathrm{H}(\mathrm{X})-\mathrm{H}(\mathrm{X} \mid \mathrm{Y})=\mathrm{H}(\mathrm{X})-0=\mathrm{H}(\mathrm{X})$
- Intuitively, Y only reveals information that Z has already revealed, and we are conditioning on Z

Mutual Information

- Claim: For certain X, Y, Z, we can have $I(X ; Y \mid Z) \geq I(X ; Y)$
- Consider $\mathrm{X}=\mathrm{Y}+\mathrm{Z}$ mod 2 , where X and Y are uniform in $\{0,1\}$
- Then,
- $\mathrm{I}(\mathrm{X} ; \mathrm{Y} \mid \mathrm{Z})=\mathrm{H}(\mathrm{X} \mid \mathrm{Z})-\mathrm{H}(\mathrm{X} \mid \mathrm{Y}, \mathrm{Z})=1-0=1$
- $\mathrm{I}(\mathrm{X} ; \mathrm{Y})=\mathrm{H}(\mathrm{X})-\mathrm{H}(\mathrm{X} \mid \mathrm{Y})=1-1=0$
- Intuitively, Y only reveals useful information about X after also conditioning on Z

Chain Rule for Mutual Information

- $I(X, Y ; Z)=I(X ; Z)+I(Y ; Z \mid X)$
- Proof: $I(X, Y ; Z)=H(X, Y)-H(X, Y \mid Z)$

$$
\begin{aligned}
& =H(X)+H(Y \mid X)-H(X \mid Z)-H(Y \mid X, Z) \\
& =I(X ; Z)+I(Y ; Z \mid X)
\end{aligned}
$$

By induction, $I\left(X_{1}, \ldots, X_{n} ; Z\right)=\sum_{i} I\left(X_{i} ; Z \mid X_{1}, \ldots, X_{\{i-1\}}\right)$

Fano's Inequality

- For any estimator X^{\prime} : X -> Y -> X^{\prime} with $P_{e}=\operatorname{Pr}\left[X^{\prime} \neq X\right]$, we have

$$
H(X \mid Y) \leq H\left(P_{e}\right)+P_{e} \cdot \log (|X|-1)
$$

Here X-> Y-> X^{\prime} is a Markov Chain, meaning X^{\prime} and X are independent given Y.
"Past and future are conditionally independent given the present"
To prove Fano's Inequality, we need the data processing inequality

Data Processing Inequality

- Suppose X -> Y -> Z is a Markov Chain. Then,

$$
I(X ; Y) \geq I(X ; Z)
$$

- That is, no clever combination of the data can improve estimation
- $I(X ; Y, Z)=I(X ; Z)+I(X ; Y \mid Z)=I(X ; Y)+I(X ; Z \mid Y)$
- So, it suffices to show $I(X ; Z \mid Y)=0$
- $I(X ; Z \mid Y)=H(X \mid Y)-H(X \mid Y, Z)$
- But given Y, then X and Z are independent, so $H(X \mid Y, Z)=H(X \mid Y)$.
- Data Processing Inequality implies $\mathrm{H}(\mathrm{X} \mid \mathrm{Y}) \leq H(X \mid Z)$

Proof of Fano's Inequality

- For any estimator X^{\prime} such that $\mathrm{X}->\mathrm{Y}->\mathrm{X}^{\prime}$ with $P_{e}=\operatorname{Pr}\left[X \neq X^{\prime}\right]$, we have $H(X \mid Y) \leq H\left(P_{e}\right)+P_{e}\left(\log _{2}|X|-1\right)$.

Proof: Let $E=1$ if X^{\prime} is not equal to X, and $E=0$ otherwise.

$$
\begin{aligned}
& H\left(E, X \mid X^{\prime}\right)=H\left(X \mid X^{\prime}\right)+H\left(E \mid X, X^{\prime}\right)=H\left(X \mid X^{\prime}\right) \\
& H\left(E, X \mid X^{\prime}\right)=H\left(E \mid X^{\prime}\right)+H\left(X \mid E, X^{\prime}\right) \leq H\left(P_{e}\right)+H\left(X \mid E, X^{\prime}\right)
\end{aligned}
$$

$$
\text { But } H\left(X \mid E, X^{\prime}\right)=\operatorname{Pr}(E=0) H\left(X \mid X^{\prime}, E=0\right)+\operatorname{Pr}(E=1) H\left(X \mid X^{\prime}, E=1\right)
$$

$$
\leq\left(1-P_{e}\right) \cdot 0+P_{e} \cdot \log _{2}(|X|-1)
$$

Combining the above, $\mathrm{H}\left(\mathrm{X} \mid \mathrm{X}^{\prime}\right) \leq H\left(P_{e}\right)+P_{e} \cdot \log _{2}(|X|-1)$
By Data Processing, $\mathrm{H}(\mathrm{X} \mid \mathrm{Y}) \leq H\left(X \mid X^{\prime}\right) \leq H\left(P_{e}\right)+P_{e} \cdot \log _{2}(|X|-1)$

Tightness of Fano’s Inequality

- Suppose the distribution p of X satisfies $p_{1} \geq p_{2} \geq \ldots \geq p_{n}$
- Suppose Y is a constant, so $\mathrm{I}(\mathrm{X} ; \mathrm{Y})=\mathrm{H}(\mathrm{X})-\mathrm{H}(\mathrm{X} \mid \mathrm{Y})=0$.
- Best predictor X^{\prime} of X is $\mathrm{X}=1$.
- $P_{e}=\operatorname{Pr}\left[X^{\prime} \neq X\right]=1-p_{1}$
- $\mathrm{H}(\mathrm{X} \mid \mathrm{Y}) \leq H\left(p_{1}\right)+\left(1-p_{1}\right) \log _{2}(\mathrm{n}-1)$ predicted by Fano's inequality
- But $\mathrm{H}(\mathrm{X})=\mathrm{H}(\mathrm{X} \mid \mathrm{Y})$ and if $p_{2}=p_{3}=\ldots=p_{n}=\frac{1-p_{1}}{n-1}$ the inequality is tight

Tightness of Fano's Inequality

- For X from distribution $\left(p_{1}, \frac{1-p_{1}}{n-1}, \ldots, \frac{1-p_{1}}{n-1}\right)$
- $H(X)=\sum_{i} p_{i} \log \left(\frac{1}{p_{i}}\right)$

$$
\begin{aligned}
& =p_{1} \log \left(\frac{1}{p_{1}}\right)+\sum_{i>1} \frac{1-p_{1}}{n-1} \log \left(\frac{n-1}{1-p_{1}}\right) \\
& =p_{1} \log \left(\frac{1}{p_{1}}\right)+\left(1-p_{1}\right) \log \left(\frac{1}{1-p_{1}}\right)+\left(1-p_{1}\right) \log (n-1) \\
& =H\left(p_{1}\right)+\left(1-p_{1}\right) \log (n-1)
\end{aligned}
$$

Talk Outline

1. Information Theory Concepts
2. An Example Communication Lower Bound - Randomized 1-way Communication Complexity of the INDEX problem

Randomized 1-Way Communication Complexity

- Alice sends a single message M to Bob
- Bob, given M and j, should output x_{j} with probability at least $2 / 3$
- Note: The probability is over the coin tosses, not inputs
- Prove that for some inputs and coin tosses, M must be $\Omega(\mathrm{n})$ bits long...

1-Way Communication Complexity of Index

- Consider a uniform distribution μ on X
- Alice sends a single message M to Bob
- We can think of Bob's output as a guess X_{j}^{\prime} to X_{j}
- For all $\mathrm{j}, \operatorname{Pr}\left[\mathrm{X}_{\mathrm{j}}^{\prime}=\mathrm{X}_{\mathrm{j}}\right] \geq \frac{2}{3}$
- By Fano's inequality, for all j ,

$$
H\left(X_{j} \mid M\right) \leq H\left(\frac{2}{3}\right)+\frac{1}{3}\left(\log _{2} 2-1\right)=H\left(\frac{1}{3}\right)
$$

1-Way Communication of Index Continued

- Consider the mutual information I(M ; X)
- By the chain rule,

$$
\begin{aligned}
I(X ; M) & =\Sigma_{i} I\left(X_{i} ; M \mid X_{<i}\right) \\
& =\Sigma_{i} H\left(X_{i} \mid X_{<i}\right)-H\left(X_{i} \mid M, X_{<i}\right)
\end{aligned}
$$

- Since the coordinates of X are independent bits, $H\left(X_{i} \mid X_{<i}\right)=H\left(X_{i}\right)=1$.
- Since conditioning cannot increase entropy,

$$
\mathrm{H}\left(\mathrm{X}_{\mathrm{i}} \mid \mathrm{M}, \mathrm{X}_{<\mathrm{i}}\right) \leq H\left(\mathrm{X}_{\mathrm{i}} \mid \mathrm{M}\right)
$$

So, $\mathrm{I}(\mathrm{X} ; \mathrm{M}) \geq \mathrm{n}-\sum_{\mathrm{i}} \mathrm{H}\left(\mathrm{X}_{\mathrm{i}} \mid \mathrm{M}\right) \geq \mathrm{n}-\mathrm{H}\left(\frac{1}{3}\right) \mathrm{n}$
So, $|\mathrm{M}| \geq \mathrm{H}(\mathrm{M}) \geq \mathrm{I}(\mathrm{X} ; \mathrm{M})=\Omega(\mathrm{n})$

Typical Communication Reduction

Lower Bound Technique

1. Run Streaming Alg on $s(a)$, transmit state of $\operatorname{Alg}(s(a))$ to Bob
2. Bob computes $\operatorname{Alg}(\mathrm{s}(\mathrm{a}), \mathrm{s}(\mathrm{b}))$
3. If Bob solves $g(a, b)$, space complexity of Alg at least the 1-way communication complexity of g

Example: Distinct Elements

- Given $\mathrm{a}_{1}, \ldots, \mathrm{a}_{\mathrm{m}}$ in [n], how many distinct numbers are there?
- Index problem:
- Alice has a bit string x in $\{0,1\}^{n}$
- Bob has an index in [n]
- Bob wants to know if $x_{i}=1$
- Reduction:
- $s(a)=i_{1}, \ldots, i_{r}$, where i_{j} appears if and only if $x_{i_{j}}=1$
- $s(b)=i$
- If $\operatorname{Alg}(s(a), s(b))=\operatorname{Alg}(s(a))+1$ then $x_{i}=0$, otherwise $x_{i}=1$
- Space complexity of Alg at least the 1-way communication complexity of Index

Strengthening Index: Augmented Indexing

- Augmented-Index problem:
- Alice has $x \in\{0,1\}^{n}$
- Bob has $i \in[n]$, and x_{1}, \ldots, x_{i-1}
- Bob wants to learn x_{i}
- Similar proof shows $\Omega(\mathrm{n})$ bound
- $I(M ; X)=\operatorname{sum}_{i} I\left(M ; X_{i} \mid X_{<i}\right)$

$$
=n-\operatorname{sum}_{i} H\left(X_{i} \mid M, X_{<i}\right)
$$

- By Fano's inequality, $H\left(X_{i} \mid M, X_{<i}\right) \leq H(\delta)$ if Bob can predict X_{i} with probability $\geq 1-\delta$ from $M, X_{<i}$
- $\mathrm{CC}_{\delta}($ Augmented-Index $) \geq \mathrm{I}(\mathrm{M} ; \mathrm{X}) \geq \mathrm{n}(1-\mathrm{H}(\mathrm{\delta}))$

Log n Bit Lower Bound for Estimating Norms

- Alice has $\mathrm{x} \in\{0,1\}^{\log \mathrm{n}}$ as an input to Augmented Index
- She creates a vector v with a single coordinate equal to $\sum_{j} 10^{j} x_{j}$
- Alice sends to Bob the state of the data stream algorithm after feeding in the input v
- Bob has i in $[\log n]$ and $x_{i+1}, x_{i+2}, \ldots, x_{\log n}$
- Bob creates vector $w=\sum_{j>i} 10^{j} x_{j}$
- Bob feeds -w into the state of the algorithm
- If the output of the streaming algorithm is at least $10^{i} / 2$, guess $x_{i}=1$, otherwise guess $\mathrm{X}_{\mathrm{i}}=0$

$\frac{1}{\epsilon^{2}}$ Bit Lower Bound for Estimating Norms

- Gap Hamming Problem: Hamming distance $\Delta(x, y)>n / 2+2 \varepsilon n$ or $\Delta(x, y)<n / 2+\varepsilon n$
- Lower bound of $\Omega\left(\varepsilon^{-2}\right)$ for randomized 1-way communication [Indyk, W], [W], [Jayram, Kumar, Sivakumar]
- Gives $\Omega\left(\varepsilon^{-2}\right)$ bit lower bound for approximating any norm
- Same for 2-way communication [Chakrabarti, Regev]

Gap-Hamming From Index [JKS]

Public coin $=r^{1}, \ldots, r^{t}$, each in $\{0,1\}^{t}$

