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Discrete Distributions 



Entropy

(symmetric)



Conditional and Joint Entropy



Chain Rule for Entropy



Conditioning Cannot Increase Entropy

• Let X and Y be random variables. Then . 

• To prove this, we need Jensen’s inequality: 
Let f be a continuous, concave function, and let ଵ ୬ be non-negative reals 

that sum to 1. For any ଵ ୬

୧ ୧ ୧ ୧୧ୀଵ,…,୬୧ୀଵ,…,୬ 

• Recall that f is concave if ୟାୠ

ଶ

୤ ୟ

ଶ
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ଶ
and f(x) = log x is concave



Conditioning Cannot Increase Entropy



Mutual Information
• (Mutual Information) I(X ; Y) = H(X) – H(X | Y) 

= H(Y) – H(Y | X) 
= I(Y ; X)

Note: I(X ; X) = H(X) – H(X | X) = H(X)

• (Conditional Mutual Information)
I(X ; Y | Z) = H(X | Z) – H(X | Y, Z)

Is I(X ; Y | Z) I(X ; Y)? Or is I(X ; Y | Z) ? Neither!



• Claim: For certain X, Y, Z, we can have I(X ; Y | Z) I(X ; Y)

• Consider X = Y = Z 

• Then, 
•
•

• Intuitively, Y only reveals information that Z has already revealed, and 
we are conditioning on Z

Mutual Information



Mutual Information

• Claim: For certain X, Y, Z, we can have I(X ; Y | Z) I(X ; Y)

• Consider , where X and Y are uniform in {0,1}

• Then, 
•
•

• Intuitively, Y only reveals useful information about X after also 
conditioning on Z



Chain Rule for Mutual Information



Fano’s Inequality

Here X -> Y -> X’ is a Markov Chain, meaning X’ and X are independent
given Y. 

“Past and future are conditionally independent given the present”

To prove Fano’s Inequality, we need the data processing inequality



Data Processing Inequality

• Suppose X -> Y -> Z is a Markov Chain. Then, 

• That is, no clever combination of the data can improve estimation

• I(X ; Y, Z) = I(X ; Z) + I(X ; Y | Z) = I(X ; Y) + I(X ; Z | Y)
• So, it suffices to show I(X ; Z | Y) = 0
• I(X ; Z | Y) = H(X | Y) – H(X | Y, Z)
• But given Y, then X and Z are independent, so H(X | Y, Z) = H(X | Y).

• Data Processing Inequality implies H(X | Y) 



Proof of Fano’s Inequality
• For any estimator X’ such that X-> Y -> X’ with ௘

ᇱ

we have ௘ ௘ ଶ

Proof: Let E = 1 if X’ is not equal to X, and E = 0 otherwise. 
H(E, X | X’) = H(X | X’) + H(E | X, X’) = H(X | X’)
H(E, X | X’) = H(E | X’) + H(X | E, X’) ௘ H(X | E, X’) 
But H(X | E, X’) = Pr(E = 0)H(X | X’, E = 0) + Pr(E = 1)H(X | X’, E = 1)

௘ ௘ ଶ

Combining the above, H(X | X’) ௘ ௘ ଶ

By Data Processing, H(X | Y) ௘ ௘ ଶ



Tightness of Fano’s Inequality



Tightness of Fano’s Inequality
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Randomized 1-Way Communication Complexity

x {0,1}n j {1, 2, 3, …, n}

INDEX 
PROBLEM



1-Way Communication Complexity of Index 

• Consider a uniform distribution μ on X
• Alice sends a single message M to Bob
• We can think of Bob’s output as a guess ୨

ᇱ
୨

• For all j, ୨
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• By Fano’s inequality, for all j, 
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1-Way Communication of Index Continued

So, ୧
ଵ

ଷ୧

So, 



Typical Communication Reduction

a {0,1}n

Create stream s(a)

b {0,1}n

Create stream s(b)

Lower Bound Technique
1. Run Streaming Alg on s(a), transmit state of Alg(s(a)) to Bob

2. Bob computes Alg(s(a), s(b))

3. If Bob solves g(a,b), space complexity of Alg at least the 1-way 
communication complexity of g 



Example: Distinct Elements
• Given a1, …, am in [n], how many distinct numbers are there?

• Index problem:
• Alice has a bit string x in {0, 1}n

• Bob has an index i in [n]
• Bob wants to know if xi = 1

• Reduction:
• s(a) = i1, …, ir, where ij appears if and only if xij

= 1
• s(b) = i
• If Alg(s(a), s(b)) = Alg(s(a))+1 then xi = 0, otherwise xi = 1

• Space complexity of Alg at least the 1-way communication complexity of Index



Strengthening Index: Augmented Indexing
• Augmented-Index problem:

• Alice has x {0, 1}n

• Bob has i [n], and x1, …, xi-1

• Bob wants to learn xi

• Similar proof shows (n) bound
• I(M ; X) = sumi I(M ; Xi | X< i)

= n – sumi H(Xi | M, X< i)

• By Fano’s inequality, H(Xi | M, X< i) H(δ) if Bob can predict Xi with 
probability 1- δ from M, X< i

• CCδ(Augmented-Index) I(M ; X) n(1-H(δ))



Log n Bit Lower Bound for Estimating Norms

• Alice has ୪୭୥ ୬ as an input to Augmented Index
• She creates a vector ୨

୨ ୨

• Alice sends to Bob the state of the data stream algorithm after feeding 
in the input v

• Bob has i in [log n] and ୧ାଵ ୧ାଶ ୪୭୥ ୬

• Bob creates vector w = ୨
୨வ୧ ୨

• Bob feeds –w into the state of the algorithm
• If the output of the streaming algorithm is at least ୧ , guess ୧ , 

otherwise guess ୧



Bit Lower Bound for Estimating Norms

x {0,1}n y {0,1}n

• Gap Hamming Problem: Hamming distance Δ(x,y) > n/2 + 2εn or Δ(x,y) < n/2 + εn

• Lower bound of Ω(ε-2) for randomized 1-way communication [Indyk, W], [W], [Jayram, 
Kumar, Sivakumar]

• Gives Ω(ε-2) bit lower bound for approximating any norm

• Same for 2-way communication [Chakrabarti, Regev]



Gap-Hamming From Index [JKS]

E[Δ(a,b)] = t/2 + xi t1/2

x {0,1}t i [t]

t = ିଶ)

Public coin = r1, …, rt , each in {0,1}t

a {0,1}t b {0,1}t

ak = Majorityj such that xj = 1
rk

j bk = rk
i


