
Outline

• L0 estimation

• Projection onto Complicated Objects and Gaussian Mean Width

• Compressed Sensing

• ଴ ୧

• How can we output a number Z with ଴ with prob. 9/10?
• Want ଶ bits of space

• Suppose ଴
ଵ

஫మ What can we do in this case?

• Use our algorithm for recovering a k-sparse vector from last time, ଵ

஫మ

• What is another way?

• But what if ଴
ଵ

஫మ

Estimating the Number of Non-Zero Entries

• Suppose we somehow had an estimate Z with ଴ , what could we
do?

• Independently sample each coordinate i with probability ଶ

• Let ୧ be an indicator random variable if coordinate i is sampled
• Let y be the vector restricted to coordinates i for which ୧

• ଴ ୧୧ ୱ୳ୡ୦ ୲୦ୟ୲ ୶౟ஷ଴ ଴
ଵ଴଴

஫మ

• ଴ ୧୧ ୱ୳ୡ୦ ୲୦ୟ୲ ୶౟ஷ଴
ଶ଴଴

஫మ

• ଴ ଴
ଵ଴଴

஫

୚ୟ୰ ୷ బ ஫మ

ଵ଴଴మ

ଵ

ହ଴

• Use sparse recovery or CountSketch to compute ଴ exactly
• Output ୷ బ

୮

Estimating the Number of Non-Zero Entries

But we don’t
know Z…

• Guess Z in powers of 2
• Since ଴ , there are guesses
• The i-th guess Z = ୧ corresponds to sampling each coordinate with

probability ଵ଴଴

ଶ౟ ஫మ

• Sample the coordinates as nested subsets ଴ ଵ ଶ

୪୭୥ ୬

• Run previous algorithm for each guess
• One of our guesses Z satisfies ଴ and we should use that

guess

• But how do we know which one?

Estimating the Number of Non-Zero Entries

Estimating the Number of Non-Zero Entries

• Use the largest guess ୧ for which ସ଴଴

஫మ ଴
ଷଶ଴଴

஫మ

• If ଼଴଴

஫మ ଴
ଵ଺଴଴

஫మ , then ସ଴଴

஫మ ଴
ଷଶ଴଴

஫మ with probability at least 49/50

• If ଵ଴଴

஫మ ଴
ଶ଴଴

஫మ , then ଴
ସ଴଴

஫మ with probability at least 49/50

• So with probability 48/50, we choose an i for which ଶ଴଴

஫మ ଴
ଵ଺଴଴

஫మ

• There are only 4 such indices i, and all 4 of them satisfy ଴ ଴
simultaneously with probability 1-4/50. So doesn’t matter which i we choose

• Overall, our success probability is 1-2/50-4/50 > 4/5

What is Our Overall Space Complexity?
• If we use our k-sparse recovery algorithm for ଵ

஫మ , then it takes ୪୭୥ ୬

஫మ bits of space in

each of log n levels, so ୪୭୥మ ୬

஫మ total bits of space ignoring random bits
• How much randomness do we need?
• Pairwise independence is enough for Chebyshev’s inequality
• Implement nested sampling by choosing a hash function ,

checking if first i bits of h(j) = 0
• O(log n) bits of space for the randomness

• Can improve to
୪୭୥ (୪୭୥

భ

ಣ
ା୪୭୥ ୪୭୥ ୬)

஫మ bits. How?

• Just need to know number of non-zero counters, so reduce counters from log n bits to
ଵ

஫
to bits

Reducing Counter Size

• In sampling levels that we care about, we have ଵ

஫మ counters, each of
O(log n) bits

• At most ୪୭୥ ୬

஫మ prime numbers dividing any of these counters

• Choose a random prime q = ୪୭୥ ୬ ୪୭୥ ୪୭୥ ௡

஫మ . Unlikely that q divides any
counters

• Just maintain our sparse recovery structure mod q, so
(୪୭୥ ୪୭୥ ୬ ା୪୭୥

భ

ച

஫మ bits per each of O(log n) sparse recovery instances

Outline

• L0 estimation

• Projection onto Complicated Objects and Gaussian Mean Width

• Compressed Sensing

Projection onto other Objects
• Least squares regression finds the closest point y in a subspace K to a given

point b

• Given a (possibly infinite) set of points K, and a point b, compute
୷∈୏

• All norms are Euclidean norms

• Let S be a sketching matrix, we want that if y’ = arg
୷∈୏

, then
ᇱ

୷∈୏

• More generally, want to preserve distances of all vectors in a set K, that is,
|S(y-y’)| = for all y, y’ K

What properties of K determine the dimension and sparsity of S?

Example: Preserving Distances in a Set

• More generally, want to preserve distances of all vectors in a set K,
that is, |S(y-y’)| = for all y, y’ K

• What is the dimension of S needed if K is:

• n arbitrary points in ୢ?

• n arbitrary points on a line in ୢ

Spherical Mean Width
• Let K be a bounded subset in ୬

• Consider the width in direction u for a unit vector u:

• Width in direction u =
୮,୯ ୧୬ ୏

• Spherical mean width = ୳
୮,୯ ୧୬ ୏

K

width

u

p

q

Gaussian Mean Width
• Let ୬ be an i.i.d. Gaussian vector

• Gaussian mean width g(K) = ୥
୮,୯ ୧୬ ୏

.ହ spherical mean width

• Examples

• K = ୬ିଵ

• .ହ

• K = set of unit vectors in a d-dimensional subspace of ୬

• .ହ

• K = t arbitrary unit vectors in ୬

• .ହ

Gaussian Mean Width of t Arbitrary Unit Vectors

• Let ଵ ୲ be t arbitrary unit vectors in ୬

• Let g in ୬ have i.i.d. N(0,1) entries

• Define random variables ୨
୨ which are N(0,1) random

variables
• Want to bound ୥

୨
୨

• Fact: for an N(0,1) random variable W, ஛୛ ஛మ/ଶ

• For any
஛ ୫ୟ୶

ౠ
୞ౠ ஛୞ౠ

୨
஛మ/ଶ

• For all ୥
୨

୨
ଵ

஛

஛ ୫ୟ୶
ౠ

୞ౠ ୪୭୥ ୲

஛

஛

ଶ

Sketching Bounds

• [Gordon] Let K be a subset of ୬ିଵ A random Gaussian matrix S with
ଶ ଶ rows satisfies

ᇱ ଶ ଶ for all y, y’ in K

• What about sparse sketching matrices S?

• [Bourgain, Dirksen, Nelson] S can have m = ଶ ଶ rows
and ଶ non- zeros per column if m and s satisfy a
condition related to higher moments of

୮,୯

• Applied to finite and infinite unions of subspaces

Outline

• L0 estimation

• Projection onto Complicated Objects and Gaussian Mean Width

• Compressed Sensing

Compressed Sensing
• We take random “linear measurements” of an n-dimensional vector x
• In our language, we choose a random r x n sketching matrix S and

observe
• Output a vector x’ with ᇱ

୮
୩ିୱ୮ୟ୰ୱୣ ୸

୯ , where D is the
distortion (୮ ୯-guarantee)

• Let ୩ be the best k-sparse approximation to x, i.e., the largest k
coordinates in magnitude

• Randomized (“for-each”) scheme versus deterministic (“for-all”)
scheme

• CountSketch is a randomized scheme achieving ଶ ଶ w.h.p.
ᇱ

ଶ ୩ ଶ

CountSketch for Compressed Sensing
• CountSketch had O(log n) repetitions of hashing into O(k) buckets
• S is a random linear map S with O(k log n) rows

• For an n-dimensional vector x, estimate every ୧ up to additive error ୶ି୶ౡ మ

୩

• Output a 2k-sparse x’ consisting of the top 2k estimates given by CountSketch
• ୧ ୩ ଶ

•

• ୧ ୩ ଶ
•

• ᇱ
ଶ

ᇱ
୘ ଶ

ᇱ
[୬]\୘ ଶ

୶ି୶ౡ మ

୩ ୩ ୬ \୘ ଶ ୩
ᇱ

୬ \୘ ଶ ୩ ଶ

No Deterministic Algorithm Achieves

• Recall ଶ ଶ
ᇱ ᇱ

ଶ ୩ ଶ

• Consider k = 1
• Suppose S is a deterministic sketching matrix with r = o(n) rows
• Suffices to show there is a vector x in kernel(S) with ஶ ଵ ଶ for

any constant C > 0
• W.l.o.g., can assume S has orthonormal rows
• ୧ ଶ

ଶ
୧ , so there exists an i with ୧ ଶ

ଶ ୰

୬
• Let ୧

୘
୧, so x is in kernel(S)

• But ஶ
ଶ

୧
ଶ

୧
୘

୧ ୧
୘ ୘

୧
ଶ ୰

୬

ଶ
, while

• ଵ ଶ ୧ ଶ
୘

୧ ଶ ୧ ଶ
୰

୬

Deterministic Algorithms Achieve

• ଶ ଵ
ᇱ ᇱ

ଶ
.ହ

୩ ଵ

• S has the -restricted isometry property (RIP) if for all k-sparse
vectors x,

ଶ
ଶ

ଶ
ଶ

ଶ
ଶ

• What are some matrices S with O(k log(n/k)) rows that have the
-RIP property for constant ?

• Deterministic, but not explicit!

• Major open question: explicit matrix with -RIP with ଶ rows
• Bourgain et al.: can get ଶିஓ rows for a constant and .ହ

Deterministic Algorithms Achieve

• If S has the -RIP then one can efficiently output an x’ for which
ᇱ

ଶ
.ହ

୩ ଵ

• In fact, can just solve a linear program!

୸∈ୖ౤ ଵ

s.t. Sz = Sx

• If x’ is the solution, then ᇱ
ଶ

ଵ

୩.ఱ ୩ ଵ

• Proof uses -RIP and elementary norm manipulations

