Outline

- L0 estimation
- Projection onto Complicated Objects and Gaussian Mean Width
- Compressed Sensing

- $|x|_0 = |\{i \text{ such that } x_i \neq 0\}|$
- How can we output a number Z with $(1 \epsilon)Z \le |x|_0 \le (1 + \epsilon)Z$ with prob. 9/10?
 - Want $O((\log n)/\epsilon^2)$ bits of space
- Suppose $|x|_0 = O(\frac{1}{\epsilon^2})$. What can we do in this case?
- Use our algorithm for recovering a k-sparse vector from last time, $\mathbf{k} = 0 \left(\frac{1}{\epsilon^2} \right)$
 - What is another way?
- But what if $|x|_0 \gg \frac{1}{\epsilon^2}$?

- Suppose we somehow had an estimate Z with Z \leq |x| $_0 \leq$ 2Z, what could we do?
- Independently sample each coordinate i with probability $p = 100/(Z \epsilon^2)$
- Let Y_i be an indicator random variable if coordinate i is sampled
- Let y be the vector restricted to coordinates i for which $Y_i = 1$
- $E[|y|_0] = \sum_{i \text{ such that } x_i \neq 0} E[Y_i] = p|x|_0 \ge \frac{100}{\epsilon^2}$
- $Var[|y|_0] = \sum_{i \text{ such that } x_i \neq 0} Var[Y_i] \le \frac{200}{\epsilon^2}$
- $\Pr[||y|_0 E[|y|_0]| > \frac{100}{\epsilon}] \le \frac{Var[|y|_0]\epsilon^2}{100^2} \le \frac{1}{50}$
- Use sparse recovery or CountSketch to compute $|y|_0$ exactly
- Output $\frac{|y|_0}{p}$

But we don't know Z...

- Guess Z in powers of 2
- Since $0 \le |x|_0 \le n$, there are $O(\log n)$ guesses
- The i-th guess Z = 2^i corresponds to sampling each coordinate with probability $p=\min(1,\frac{100}{2^i\,\epsilon^2})$
- Sample the coordinates as nested subsets $[n] = S_0 \supseteq S_1 \supseteq S_2 \supseteq \cdots S_{\log n}$
- Run previous algorithm for each guess
- One of our guesses Z satisfies $Z \le |x|_0 \le 2Z$ and we should use that guess
- But how do we know which one?

- Use the largest guess $Z=2^i$ for which $\frac{400}{\epsilon^2} \leq |y|_0 \leq \frac{3200}{\epsilon^2}$
- If $\frac{800}{\epsilon^2} \le \mathrm{E}[|\mathbf{y}|_0] \le \frac{1600}{\epsilon^2}$, then $\frac{400}{\epsilon^2} \le |\mathbf{y}|_0 \le \frac{3200}{\epsilon^2}$ with probability at least 49/50
- If $\frac{100}{\epsilon^2} \le \mathrm{E}[|\mathbf{y}|_0] \le \frac{200}{\epsilon^2}$, then $|\mathbf{y}|_0 < \frac{400}{\epsilon^2}$ with probability at least 49/50
- So with probability 48/50, we choose an i for which $\frac{200}{\epsilon^2} \le \mathrm{E}[|\mathbf{y}|_0] \le \frac{1600}{\epsilon^2}$
- There are only 4 such indices i, and all 4 of them satisfy $|y|_0 = (1 \pm \epsilon) E[|y|_0]$ simultaneously with probability 1-4/50. So doesn't matter which i we choose
- Overall, our success probability is 1-2/50-4/50 > 4/5

What is Our Overall Space Complexity?

- If we use our k-sparse recovery algorithm for $k=O\left(\frac{1}{\epsilon^2}\right)$, then it takes $O(\frac{\log n}{\epsilon^2})$ bits of space in each of log n levels, so $O(\frac{\log^2 n}{\epsilon^2})$ total bits of space ignoring random bits
 - How much randomness do we need?
 - Pairwise independence is enough for Chebyshev's inequality
 - Implement nested sampling by choosing a hash function $h: [n] \to [n]$, checking if first i bits of h(j) = 0
 - O(log n) bits of space for the randomness
- Can improve to $O\left(\frac{\log\left(\log\left(\frac{1}{\epsilon}\right) + \log\log n\right)}{\epsilon^2}\right)$ bits. How?
- Just need to know number of non-zero counters, so reduce counters from log n bits to $O(\log\left(\frac{1}{\epsilon}\right) + \log\log n)$ to bits

Reducing Counter Size

- In sampling levels that we care about, we have $O\left(\frac{1}{\epsilon^2}\right)$ counters, each of $O(\log n)$ bits
- At most $O\left(\frac{\log n}{\epsilon^2}\right)$ prime numbers dividing any of these counters
- Choose a random prime q = $O\left(\frac{\log n \log \log n}{\epsilon^2}\right)$. Unlikely that q divides any counters
- Just maintain our sparse recovery structure mod q, so $O\left(\frac{(\log\log n + \log\left(\frac{1}{\epsilon}\right)}{\epsilon^2}\right) \text{ bits per each of O(log n) sparse recovery instances}$

Outline

- L0 estimation
- Projection onto Complicated Objects and Gaussian Mean Width
- Compressed Sensing

Projection onto other Objects

- Least squares regression finds the closest point y in a subspace K to a given point b
- Given a (possibly infinite) set of points K, and a point b, compute $\min_{y \in K} |y b|$
 - All norms are Euclidean norms
- Let S be a sketching matrix, we want that if y' = $\underset{y \in K}{\operatorname{argmin}} |Sy Sb|$, then

$$|y' - b| \le (1 + \epsilon) \min_{y \in K} |y - b|$$

• More generally, want to preserve distances of all vectors in a set K, that is, $|S(y-y')| = (1 \pm \epsilon)|y-y'|$ for all y, y' \in K

What properties of K determine the dimension and sparsity of S?

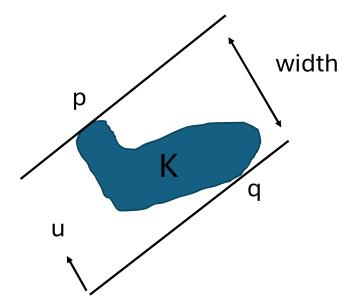
Example: Preserving Distances in a Set

• More generally, want to preserve distances of all vectors in a set K, that is, $|S(y-y')| = (1 \pm \epsilon)|y-y'|$ for all y, y' \in K

- What is the dimension of S needed if K is:
 - n arbitrary points in R^d?
 - n arbitrary points on a line in R^d?

Spherical Mean Width

- Let K be a bounded subset in Rⁿ
- Consider the width in direction u for a unit vector u:



- Width in direction $u = \sup_{p,q \text{ in } K} \langle u, p q \rangle$
- Spherical mean width = $E_u [\sup_{p,q \text{ in } K} < u, p-q>]$

Gaussian Mean Width

- Let $g \sim N(0, I_n)$ be an i.i.d. Gaussian vector
- Gaussian mean width g(K) = Eg[$\sup_{p,q \text{ in K}} < g, p-q>$] = $\Theta(n^{.5})$ · spherical mean width
- Examples
 - $K = S^{n-1}$
 - $\Theta(n^{.5})$
 - $K = set of unit vectors in a d-dimensional subspace of <math>R^n$
 - $\Theta(d^{.5})$
 - K = t arbitrary unit vectors in Rⁿ
 - $\Theta(\log^{.5} t)$

Gaussian Mean Width of t Arbitrary Unit Vectors

- Let $u^1, ..., u^t$ be t arbitrary unit vectors in R^n
- Let g in Rⁿ have i.i.d. N(0,1) entries
- Define random variables $Z_j = \langle u^j, g \rangle$ which are N(0,1) random variables
- Want to bound $E_g[\max_j Z_j]$
- Fact: for an N(0,1) random variable W, $E[e^{\lambda W}] = e^{\lambda^2/2}$
- For any $\lambda > 0$, $E\left[e^{\lambda \max_j Z_j}\right] \le \sum_j E\left[e^{\lambda Z_j}\right] \le t \ e^{\lambda^2/2}$
- For all $\lambda > 0$, $E_g[\max_j Z_j] \le \left(\frac{1}{\lambda}\right) \log E[e^{\lambda \max_j Z_j}] \le \left(\frac{\log t}{\lambda} + \frac{\lambda}{2}\right) \le 2\sqrt{\log t}$

Sketching Bounds

• [Gordon] Let K be a subset of S^{n-1} . A random Gaussian matrix S with $g(K)^2/\epsilon^2$ rows satisfies

$$|S(y - y')|^2 = (1 \pm \epsilon)|y - y'|^2$$
 for all y, y' in K

- What about sparse sketching matrices S?
- [Bourgain, Dirksen, Nelson] S can have $m = g(K)^2 poly(log n)/\epsilon^2$ rows and $s = poly(log n)/\epsilon^2$ non-zeros per column if m and s satisfy a condition related to higher moments of $\sup_{n \in S} \langle g, p q \rangle$
 - Applied to finite and infinite unions of subspaces

Outline

- L0 estimation
- Projection onto Complicated Objects and Gaussian Mean Width
- Compressed Sensing

Compressed Sensing

- We take random "linear measurements" of an n-dimensional vector x
- In our language, we choose a random r x n sketching matrix S and observe $S \cdot x$
- Output a vector x' with $|x-x'|_p=D$ · min $|x-z|_q$, where D is the distortion (the ℓ_p/ℓ_q -guarantee)
- \bullet Let x_k be the best k-sparse approximation to x, i.e., the largest k coordinates in magnitude
- Randomized ("for-each") scheme versus deterministic ("for-all") scheme
- CountSketch is a randomized scheme achieving ℓ_2/ℓ_2 w.h.p. $|\mathbf{x} \mathbf{x}'|_2 = 0(1) \cdot |\mathbf{x} \mathbf{x}_{\mathbf{k}}|_2$

CountSketch for Compressed Sensing

- CountSketch had O(log n) repetitions of hashing into O(k) buckets
- S is a random linear map S with O(k log n) rows
- For an n-dimensional vector x, estimate every x_i up to additive error $\frac{|x-x_k|_2}{\sqrt{k}}$
- Output a 2k-sparse x' consisting of the top 2k estimates given by CountSketch
- Say coordinate i is heavy if $|x_i| \ge |x x_k|_2 / \sqrt{k}$
 - How many heavy coordinates can there be?
- Say a coordinate i is super-heavy if $|x_i| \ge 3|x x_k|_2/\sqrt{k}$
 - Claim: the set T of super-heavy coordinates is in the support of x'

•
$$|x - x'|_2 \le |(x - x')_T|_2 + |(x - x')_{[n] \setminus T}|_2$$

 $\le \sqrt{|T|} \cdot \frac{|x - x_k|_2}{\sqrt{k}} + |(x - x_k)_{[n] \setminus T}|_2 + |(x_k - x')_{[n] \setminus T}|_2 = O(|x - x_k|_2)$

No Deterministic Algorithm Achieves ℓ_2/ℓ_2

- Recall ℓ_2/ℓ_2 : output x'with $|\mathbf{x} \mathbf{x}'|_2 = O(1) \cdot |\mathbf{x} \mathbf{x}_k|_2$
- Consider k = 1
- Suppose S is a deterministic sketching matrix with r = o(n) rows
- Suffices to show there is a vector x in kernel(S) with $|x|_\infty \ge C|x-x_1|_2$ for any constant C > 0
- W.l.o.g., can assume S has orthonormal rows
- $\sum_{i} |Se_{i}|_{2}^{2} = r$, so there exists an i with $|Se_{i}|_{2}^{2} \leq \frac{r}{n}$
- Let $x = e_i S^T S e_i$, so x is in kernel(S)
- But $|\mathbf{x}|_{\infty}^2 \ge |\mathbf{x}_i|^2 = \left(\mathbf{e}_i^T \mathbf{e}_i \mathbf{e}_i^T \mathbf{S}^T \mathbf{S} \mathbf{e}_i\right)^2 \ge \left(1 \frac{\mathbf{r}}{\mathbf{n}}\right)^2$, while
- $|x x_1|_2 \le |x e_i|_2 = |S^T Se_i|_2 = |Se_i|_2 \le \sqrt{\frac{r}{n}} = o(1)$

Deterministic Algorithms Achieve ℓ_2/ℓ_1

- ℓ_2/ℓ_1 : output x'with $|x x'|_2 = O(1/k^{.5}) \cdot |x x_k|_1$
- S has the (ϵ, k) -restricted isometry property (RIP) if for all k-sparse vectors x,

$$(1 - \epsilon)|\mathbf{x}|_2^2 \le |\mathbf{S}\mathbf{x}|_2^2 \le (1 + \epsilon)|\mathbf{x}|_2^2$$

- What are some matrices S with O(k log(n/k)) rows that have the (ϵ, k) -RIP property for constant ϵ ?
- Deterministic, but not explicit!
- Major open question: explicit matrix with (ϵ, k) -RIP with $o(k^2)$ rows
- Bourgain et al.: can get $k^{2-\gamma}$ rows for a constant $\gamma>0$ and $k\approx n^{.5}$

Deterministic Algorithms Achieve ℓ_2/ℓ_1

• If S has the (ϵ, k) -RIP then one can efficiently output an x' for which $|x-x'|_2=0\big(1/k^{.5}\big)\cdot|x-x_k|_1$

In fact, can just solve a linear program!

$$\min_{z \in R^n} |z|_1$$

s.t. Sz = Sx

- If x' is the solution, then $|\mathbf{x}-\mathbf{x}'|_2 \leq O\left(\frac{1}{\mathbf{k}^{.5}}\right)|\mathbf{x}-\mathbf{x}_\mathbf{k}|_1$
- Proof uses (ϵ, k) -RIP and elementary norm manipulations