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Estimating the Number of Non-Zero Entries

* |x|o = |{i such that x; # 0}|

How can we output a number Z with (1 — €)Z < |x|y < (1 + €)Z with prob. 9/10?
« Want O((logn)/€?) bits of space

Suppose |x|, = O(Eiz). What can we do in this case?

: : : 1
Use our algorithm for recovering a k-sparse vector from last time, k = O (6—2)
* What is another way?

But what if |x|, > eiz?



Estimating the Number of Non-Zero Entries

. Sugpose we somehow had an estimate Zwith Z < |x|, < 2Z, what could we

* Independently sample each coordinate i with probability p = 100/(Z €?)
* Let Y; be an indicator random variable if coordinate i is sampled

* Lety be the vector restricted to coordinates i forwhichY; = 1

— Zisuch that x;#0 E[Yi] — plXIO =

* E[lylo]
* Var||ylo

- Pr|lylo — Ellylo]| > =
* Use sparse recovery or Cou ntSketch to compute |y|, exactly ~_~
* Output— 5
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But we don’t
know Z...




Estimating the Number of Non-Zero Entries

e GuessZin powers of 2
* Since 0 < |x|y < n, there are O(logn) guesses

* Thei-thguessZ= 2! corresponds to sampling each coordinate with

probability p = min(1, 2110602)

« Sample the coordinates as nested subsets [n] =S, 2S5, 2S5, 2
+Slogn
* Run previous algorithm for each guess

* One of our guesses Z satisfies Z < |x|, < 2Z and we should use that
guess

e But how do we know which one?



Estimating the Number of Non-Zero Entries

3200
e2

e Use the largest guess Z = 2! for which % < lylg <

 If =2 < E[lylo] < =5 then =2 < [ylo < =5> with probability at least 49/50

. If% < E[lylo] < zg’ then |y|, < %With probability at least 49/50

1600

* So with probability 48/50, we choose an i for which 2% < Ellylo] < "

 There are only 4 such indices i, and all 4 of them satisfy |y|, = (1 + €)E[]|y],]
simultaneously with probability 1-4/50. So doesn’t matter which i we choose

* Overall, our success probability is 1-2/50-4/50 > 4/5



What is Our Overall Space Complexity?

1 : :
Oe%n) bits of space in

* |If we use our k-sparse recovery algorithm fork = O (eiz), then it takes O(

log?

n) total bits of space ignoring random bits

each of log n levels, so 0(—;
* How much randomness do we need?

* Pairwise independence is enough for Chebyshev’s inequality

* Implement nested sampling by choosing a hash function h: [n] — [n],
checking if firsti bits of h(j) =0

O(log n) bits of space for the randomness

) log (log £ +log log n)
* Canimprove toO< (E)

e2

) bits. How?

* Just need to know number of non-zero counters, so reduce counters from log n bits to
O(log (E) + loglogn) to bits



Reducing Counter Size

1

62) counters, each of

* In sampling levels that we care about, we have O (
O(log n) bits

logn

* At most O ( ) prime numbers dividing any of these counters

e2

lognloglogn

* Choose arandom primeq=0 ( ) Unlikely that g divides any

counters

€2

* Just maintain our sparse recovery structure mod q, so
1
0 ((loglogn +log(g)

e2

) bits per each of O(log n) sparse recovery instances
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Projection onto other Objects

* Least squares regression finds the closest pointyin a subspace Kto a given
point b

* Given a (possibly infinite) set of points K, and a point b, compute mellr<1 ly — b
y
* Allnorms are Euclidean norms
* Let S be a sketching matrix, we want thatify’ = argmeilr<1 |Sy — Sb|, then
y
ly" —b| < (1 + €)min|y — b|
yeK
* More generally, want to preserve distances of all vectors in a set K, that is,

ISy-y')l = (1 £ e)|ly —y'| forally,y’ €K

What properties of K determine the dimension and sparsity of S?



Example: Preserving Distances in a Set

* More generally, want to preserve distances of all vectors in a set K,
thatis, [S(y-y’)|= (1 £ €)|y — y'| forally, y’ € K

e What is the dimension of S needed if K is:
e n arbitrary points in R4?

* n arbitrary points on a line in Rd?



Spherical Mean Width

* Let K be a bounded subset in R®
* Consider the width in direction u for a unit vector u:

width

u

\

* Width in directionu= sup <up-—q>
p.qinK
* Sphericalmeanwidth=E [ sup <u,p—q>]
p,qin K



Gaussian Mean Width

Letg ~ N(O,I,,) be ani.i.d. Gaussian vector

Gaussian mean width g(K) =Eg[ sup < g,p—q>]
p,qinK

= 0(n®) - spherical mean width

Examples

« K=sn"1
¢ O(n®)

» K =set of unit vectors in a d-dimensional subspace of R®
. @(dS)

» K=tarbitrary unit vectors in R"
« O(log®t)



Gaussian Mean Width of t Arbitrary Unit Vectors

e Letu?, ..., ut be t arbitrary unit vectors in R®
* Let gin R™ havei.i.d. N(0,1) entries

* Define random variables Z; = < uj,g > which are N(0,1) random
variables

* Want to bound Eg[maxZ;]
j
* Fact: for an N(0,1) random variable W, E[eAW] — e7‘2/2

max Z;

e Forany A > O,E[e}\ 4| < ZjE[eAZi] < t er’/2

A max Z]

1 . logt
* ForallA > 0, Eg[mjaXZ]-] < (X) logE[e 1 ']< (Og _) < 2,/logt



Sketching Bounds

 [Gordon] Let K be a subset of S®~ 1. A random Gaussian matrix S with
g(K)?/€e? rows satisfies

ISy —y)I? = (1 £ e)ly —y'|*forally,y’ inK
* What about sparse sketching matrices S?

* [Bourgain, Dirksen, Nelson] S can have m = g(K)“poly(log n)/€* rows
and s = poly(log n)/e? non- zeros per column if m and s satisfy a

condition related to higher moments of sup < g,p—q >
p.q
* Applied to finite and infinite unions of subspaces
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Compressed Sensing

* \WWe take random “linear measurements” of an n-dimensional vector x

* In our language, we choose a random r x n sketching matrix S and
observe S - x

* Output avector X’ with [x —x'|, =D - min |x—z|,,whereDisthe
. . k—sparse z
distortion (the ¢, /¢4-guarantee)

* Let X be the best k-sparse approximation to x, i.e., the largest k
coordinates in magnitude

* Randomized (“for-each”) scheme versus deterministic (“for-all”)
scheme

* CountSketch is a randomized scheme achieving £, /£, w.h.p.
x —x'|; = 0(1) [x — x¢l



CountSketch for Compressed Sensing

* CountSketch had O(log n) repetitions of hashing into O(k) buckets
* Sisarandom linear map S with O(k log n) rows

|X—Xg |7
vk
* Output a 2k-sparse x’ consisting of the top 2k estimates given by CountSketch

* For an n-dimensional vector x, estimate every x; up to additive error

« Say coordinate i is heavy if |x;| = |x — x|, /Vk
* How many heavy coordinates can there be?

e Say a coordinate i is super-heavy if |x;| = 3|x — xi|,/Vk
* Claim: the set T of super-heavy coordinates is in the support of x’

s Ix—x'l; < [x = %)l + [(x = XD,

|X—Xk| '
< .J/IT| X\/);—(k 24 | (x = xidmplz + |G — x )[n]\le = 0(Ix = xxl2)




No Deterministic Algorithm Achieves £, /£,

* Recall £, /¥,: output x'with |x — x|, = 0(1) *|x — x|
* Considerk =1
* Suppose Sis a deterministic sketching matrix with r = o(n) rows

« Suffices to show there is a vector x in kernel(S) with |x|, = C|x — x4|, for
any constantC>0

* W.l.o.g., can assume S has orthonormal rows
* ¥:|Se;|5 = r, so there exists an i with |Se;|5 < %
* Letx = e; — S'Se;, so xis in kernel(S)

2
* But [x]|%, = |x;]% = (ef e — eiTSTSei)2 > (1 — i) , while

r
*x—Xq]p S [x—ej], = |STSei|2 = |Sej|, < o= o(1)



Deterministic Algorithms Achieve £, /¥,

« £, /¢1:output x'with [x — x'|, = O(l/k'5 ) 1x — Xk 4

* S has the (€ k)-restricted isometry property (RIP) if for all k-sparse

vectors X,
(1-©lxl5 < ISx|5 < (1 + ¢)|x|3

* What are some matrices S with O(k log(n/k)) rows that have the
(¢, k)-RIP property for constant €?

* Deterministic, but not explicit!

* Major open question: explicit matrix with (€, k)-RIP with o(kz) rows

* Bourgain et al.: can get k™Y rows for a constanty > 0 and k = n*®



Deterministic Algorithms Achieve £, /¥,

* If S has the (g, k)-RIP then one can efficiently output an x’ for which
x = x'l; = 0(1/k®) -|x — x|

* In fact, can just solve a linear program!

min |z
ZERnII1
s.t. Sz = Sx

b A M 1
* If X’ is the solution, then |[x — x'|, < O (k—s) |x — xxlq

* Proof uses (g, k)-RIP and elementary norm manipulations



