
CS 15-851: Algorithms for Big Data Spring 2024

Lecture 4 — 02/08/2024
Prof. David Woodruff Scribe: Harry H. Jiang

1 Low-Rank Approximation

Reminder: the goal of LoRA is to output a rank k matrix A′ such that ||A−A′||F ≤ (1+ε)||A−Ak||F
where Ak is the k-rank approximation of A. This can be done in nnz(A)+(n + d)poly(k/ε) time.

So far, the algorithm is to:

1. Compute SA

2. Project each of the rows of A onto SA

3. Find best rank-k approximation of projected points inside the rowspace of SA.

We know previously that ||Ak(SAk)−SA−A||2F ≤ (1 + ε)||Ak −A||2F . From this, we can determine
that

min
rank-k matrix X

||XSA−A||2F ≤ ||Ak(SAk)−SA−A||2F ≤ (1 + ε)||A−Ak||2F (1)

By the normal equations we when have ,

||XSA−A||2F = ||XSA−A(SA)−SA||2F + ||A(SA)−SA−A||2F (2)

where the last last term is A minus the projection of A onto SA (or, with SVD, PSA = (SA)−SA =
V ΣUT UΣV T = V V T); there exists a difference between it and the left-hand side due to the
requirement of X to be of rank k. Removing the second term in the above from the minimum, we
obtain

min
rank-k X

||XSA−A||2F = ||A(SA)−SA−A||2F + min
rank-k X

||XSA−A(SA)−SA||2F (3)

We can then apply SVD to SA and write it as SA = UΣV T as a “thin” SVD (meaning Σ is of
width rank(SA) and the bottom rows of V T are discarded) where SA ∈ Rx×d, U ∈ Rs×s, Σ ∈ Rs×s,
V T ∈ Rs×d and s =poly(k/ε) We can notice that

min
rank-k X

||XSA−A(SA)−SA||2F = min
rank-k X

||XUΣ−A(SA)−UΣ||2F (4)

where X ∈ Rn×s and UΣ ∈ Rs×s. V T is discarded due to its norm-preserving properties. Performing
an s× s change of basis Y = XUΣ, we have

min
rank-k X

||XSA−A(SA)−SA||2F = min
rank-k Y

||Y −A(SA)−UΣ||2F (5)

We can then compute the SVD of A(SA)−UΣ. This is better than naïve SVD, but multiplying
A ∗ (SA)−UΣ is still slow, thus step 2 in the LoRA algorithm becomes a bottleneck in computation.

1

1.1 Sketching Projection onto SA

We use sketching to approximate the projection in order to achieve the desired runtime:

min
rank-k X

||XSA−A||2F → min
rank-k X

||XSAR−AR||2F (6)

This can be solved using affine embedding R such that

||XSAR−AR||2F = (1± ε)||XSA−A||2F∀X (7)

where both AR and SAR can be computed in nnz(A) time.

Solving for minimum rank-k matrix X, we have:

min
rank-k X

||XSAR−AR||2F = ||AR(SAR)−SAR−AR||2F + min
rank-k X

||XSAR−AR(SAR)−SAR||2F (8)

with change of bases, all we need to compute is

min
rank-k Y

||Y −AR(SAR)−SAR||2F (9)

where the minimizer Y should be in the row span of SAR and SVD takes npoly(k/ε) to compute.
Since Y = XSAR for some X, we can output Y (SAR)−SA in factored form which is cheaper to
compute:

L = U ∈ Rn×k, R = ΣV T (SAR)−SA ∈ Rk×d (10)

2 High Precision Regression

Returning to regression, we aim to find an x′ for which ||Ax′−b||2 ≤ (1+ε) minx ||Ax−b||2 with high
probability. So far, the algorithms covered for regressions run at poly(d/ε). This may sometimes
still be too expensive.

Goal: find an algorithm for regression that runs at poly(d)log(1/ε).

Beyond that, we want to make A “well-conditioned” using a metric κ

κ(A) =
sup

||x||2=1
||Ax||2

inf
||x||2=1

||Ax||2
(11)

where the numerator is the highest singular value of A and the denominator is the lowest. To be
“well-conditioned” would then to have a low κ(A) as many algorithms’ time complexity depend on
it; we want to minimize this value to O(1) using sketching.

2.1 Small QR Decomposition

Let S be a (1 + ε0)-subspace embedding for A. We compute SA ∈ Rd2×d (the row number is
arbitrary as we are dealing with an arbitrary S), then an equivalent QR-factorization SA = QR−1.
eQR-factorization is to use SVD where Q = U and R−1 = ΣV T which allows for κ(SAR) = κ(Q) = 1

2

Claim 1. Given κ(SAR) = κ(Q) = 1,

κ(AR) = 1 + ε0
1− ε0

(12)

Proof. Evaluate singular value bounds of AR and SAR.

∀x, ||x||2 = 1, (1− ε0)||ARx||2 ≤ ||SARx||2 = 1

∀x, ||x||2 = 1, (1 + ε0)||ARx||2 ≥ ||SARx||2 = 1

κ(AR) =
sup

||x||2=1
||ARx||2

inf
||x||2=1

||ARx||2
≤ 1 + ε0

1− ε0
(13)

■

Aside: if we want κ(AR) = 1, then AR = U .

2.2 Finding a Constant Factor Solution

Let S be a (1 + ε0)-subspace embedding for AR; we can then solve x0 = argminx ||SARx− Sb||2.
If we compute SA first then SAR, then the time to compute R and x0 is nnz(A)+poly(d) for
constant ε0, which is really good for gradient descent with an initial point x0.

The gradient descent algorithm is as follows:

xm+1 ← xm + RT AT (b−ARxm) (14)

with the second term being the gradient in linear regression.

Looking at the regression task for a step m, we see that

AR(xm+1 − x∗) = AR(xm + RT AT (b−ARxm)− x∗) (15)
= ARxm + ARRT AT b−ARRT AT ARxm −ARx∗ (16)

since x∗ = minx ||ARx− b||, we have RT AT b = RT AT ARx∗, therefore

AR(xm+1 − x∗) = (AR−ARRT AT AR)(xm − x∗) (17)
= U(Σ− Σ3)V T (xm − x∗) (18)

with the last line stemming from an SVD on AR: given AR = UΣV T , AR − ARRT AT AR =
UΣV T −UΣV T V ΣUT UΣV T = UΣV T −UΣΣΣV T . The singular value matrices at this point have
elements

Σ =

1 + ε0
. . .

1− ε0

 Σ3 =

∼ 1 + 3ε0
. . .

∼ 1− 3ε0

 Σ−Σ3 =

±O(ε0)
. . .

±O(ε0)

(19)

3

Observing the magnitude of a step, we have:

||AR(xm+1 − x∗)||2 = ||(Σ− Σ3)V T (xm − x∗)||2 (20)
= O(ε0)||AR(xm − x∗)||2 (21)
= O(ε0)m+1||AR(x0 − x∗)||2 (22)

using the property that

||(Σ− Σ3)V T (xm − x∗)||2 ≤ O(ε0)||V T (xm − x∗)||2

≤ O(ε0)
1− ε0

||ΣV T (xm − x∗)||2

= O(ε0)||UΣV T (xm − x∗)||2
= O(ε0)||AR(xm − x∗)||2

If we set O(ε0) = 1/2 and m = log(1ε0), then ||AR(xm+1 − x∗)||2 = ε0||AR(x0 − x∗)||2, and
by Pythagorean theorem, between ARx0, ARx∗, and b, we can show that ||AR(xm+1 − x∗)||2 ≤
O(ε0)OPT.

The final tally for runtime is:

1. nnz(A)+poly(d) for finding preconditioner R.

2. nnz(A)+poly(d) for O(1) approximation of x0.

3. O(log(1/ε))(nnz(A)+poly(d)) for gradient descent updates.

Adding them together yields a time complexity of poly(d)log(1/ε) as desired.

4

	Low-Rank Approximation
	Sketching Projection onto SA

	High Precision Regression
	Small QR Decomposition
	Finding a Constant Factor Solution

