CS 15-851: Algorithms for Big Data	Spring 2024	
Lecture $4-02 / 08 / 2024$		
Prof. David Woodruff		Scribe: Harry H. Jiang

1 Low-Rank Approximation

Reminder: the goal of LoRA is to output a rank k matrix A^{\prime} such that $\left\|A-A^{\prime}\right\|_{F} \leq(1+\varepsilon)\left\|A-A_{k}\right\|_{F}$ where A_{k} is the k-rank approximation of A. This can be done in nnz $(A)+(n+d)$ poly (k / ε) time.

So far, the algorithm is to:

1. Compute $S A$

2. Project each of the rows of A onto $S A$
3. Find best rank- k approximation of projected points inside the rowspace of $S A$.

We know previously that $\left\|A_{k}\left(S A_{k}\right)^{-} S A-A\right\|_{F}^{2} \leq(1+\varepsilon)\left\|A_{k}-A\right\|_{F}^{2}$. From this, we can determine that

$$
\begin{equation*}
\min _{\text {rank-k matrix } X}\|X S A-A\|_{F}^{2} \leq\left\|A_{k}\left(S A_{k}\right)^{-} S A-A\right\|_{F}^{2} \leq(1+\varepsilon)\left\|A-A_{k}\right\|_{F}^{2} \tag{1}
\end{equation*}
$$

By the normal equations we when have ,

$$
\begin{equation*}
\|X S A-A\|_{F}^{2}=\left\|X S A-A(S A)^{-} S A\right\|_{F}^{2}+\left\|A(S A)^{-} S A-A\right\|_{F}^{2} \tag{2}
\end{equation*}
$$

where the last last term is A minus the projection of A onto $S A$ (or, with SVD, $P_{S A}=(S A)^{-} S A=$ $V \Sigma U^{T} U \Sigma V^{T}=V V^{T}$); there exists a difference between it and the left-hand side due to the requirement of X to be of rank k. Removing the second term in the above from the minimum, we obtain

$$
\begin{equation*}
\min _{\text {rank-kX }}\|X S A-A\|_{F}^{2}=\left\|A(S A)^{-} S A-A\right\|_{F}^{2}+\min _{\text {rank-k } X}\left\|X S A-A(S A)^{-} S A\right\|_{F}^{2} \tag{3}
\end{equation*}
$$

We can then apply SVD to $S A$ and write it as $S A=U \Sigma V^{T}$ as a "thin" SVD (meaning Σ is of width $\operatorname{rank}(S A)$ and the bottom rows of V^{T} are discarded) where $S A \in \mathbb{R}^{x \times d}, U \in \mathbb{R}^{s \times s}, \Sigma \in \mathbb{R}^{s \times s}$, $V^{T} \in \mathbb{R}^{s \times d}$ and $s=\operatorname{poly}(k / \varepsilon)$ We can notice that

$$
\begin{equation*}
\min _{\text {rank-k } X}\left\|X S A-A(S A)^{-} S A\right\|_{F}^{2}=\min _{\text {rank-k } X}\left\|X U \Sigma-A(S A)^{-} U \Sigma\right\|_{F}^{2} \tag{4}
\end{equation*}
$$

where $X \in \mathbb{R}^{n \times s}$ and $U \Sigma \in \mathbb{R}^{s \times s}$. V^{T} is discarded due to its norm-preserving properties. Performing an $s \times s$ change of basis $Y=X U \Sigma$, we have

$$
\begin{equation*}
\min _{\text {rank-k }}\left\|X S A-A(S A)^{-} S A\right\|_{F}^{2}=\min _{\text {rank-k } Y}\left\|Y-A(S A)^{-} U \Sigma\right\|_{F}^{2} \tag{5}
\end{equation*}
$$

We can then compute the SVD of $A(S A)^{-} U \Sigma$. This is better than naïve SVD, but multiplying $A *(S A)^{-} U \Sigma$ is still slow, thus step 2 in the LoRA algorithm becomes a bottleneck in computation.

1.1 Sketching Projection onto $S A$

We use sketching to approximate the projection in order to achieve the desired runtime:

$$
\begin{equation*}
\min _{\text {rank }-k X}\|X S A-A\|_{F}^{2} \rightarrow \min _{\text {rank }-k X}\|X S A R-A R\|_{F}^{2} \tag{6}
\end{equation*}
$$

This can be solved using affine embedding R such that

$$
\begin{equation*}
\|X S A R-A R\|_{F}^{2}=(1 \pm \varepsilon)\|X S A-A\|_{F}^{2} \forall X \tag{7}
\end{equation*}
$$

where both $A R$ and $S A R$ can be computed in nnz (A) time.
Solving for minimum rank- k matrix X, we have:

$$
\begin{equation*}
\min _{\text {rank-k } X}\|X S A R-A R\|_{F}^{2}=\left\|A R(S A R)^{-} S A R-A R\right\|_{F}^{2}+\min _{\text {rank-k } X}\left\|X S A R-A R(S A R)^{-} S A R\right\|_{F}^{2}(\varepsilon \tag{8}
\end{equation*}
$$

with change of bases, all we need to compute is

$$
\begin{equation*}
\min _{\text {rank-k } Y}\left\|Y-A R(S A R)^{-} S A R\right\|_{F}^{2} \tag{9}
\end{equation*}
$$

where the minimizer Y should be in the row span of $S A R$ and SVD takes $n \mathrm{poly}(k / \varepsilon)$ to compute. Since $Y=X S A R$ for some X, we can output $Y(S A R)^{-} S A$ in factored form which is cheaper to compute:

$$
\begin{equation*}
L=U \in \mathbb{R}^{n \times k}, R=\Sigma V^{T}(S A R)^{-} S A \in \mathbb{R}^{k \times d} \tag{10}
\end{equation*}
$$

2 High Precision Regression

Returning to regression, we aim to find an x^{\prime} for which $\left\|A x^{\prime}-b\right\|_{2} \leq(1+\varepsilon) \min _{x}\|A x-b\|_{2}$ with high probability. So far, the algorithms covered for regressions run at $\operatorname{poly}(d / \varepsilon)$. This may sometimes still be too expensive.
Goal: find an algorithm for regression that runs at poly $(d) \log (1 / \varepsilon)$.
Beyond that, we want to make A "well-conditioned" using a metric κ

$$
\begin{equation*}
\kappa(A)=\frac{\sup _{\|x\|_{2}=1}\|A x\|_{2}}{\inf _{\|x\|_{2}=1}\|A x\|_{2}} \tag{11}
\end{equation*}
$$

where the numerator is the highest singular value of A and the denominator is the lowest. To be "well-conditioned" would then to have a low $\kappa(A)$ as many algorithms' time complexity depend on it; we want to minimize this value to $O(1)$ using sketching.

2.1 Small $Q R$ Decomposition

Let S be a $\left(1+\varepsilon_{0}\right)$-subspace embedding for A. We compute $S A \in \mathbb{R}^{d^{2} \times d}$ (the row number is arbitrary as we are dealing with an arbitrary S), then an equivalent $Q R$-factorization $S A=Q R^{-1}$. $\mathrm{e} Q R$-factorization is to use SVD where $Q=U$ and $R^{-1}=\Sigma V^{T}$ which allows for $\kappa(S A R)=\kappa(Q)=1$

Claim 1. Given $\kappa(S A R)=\kappa(Q)=1$,

$$
\begin{equation*}
\kappa(A R)=\frac{1+\varepsilon_{0}}{1-\varepsilon_{0}} \tag{12}
\end{equation*}
$$

Proof. Evaluate singular value bounds of $A R$ and $S A R$.
$\forall x,\|x\|_{2}=1,\left(1-\varepsilon_{0}\right)\|A R x\|_{2} \leq\|S A R x\|_{2}=1$
$\forall x,\|x\|_{2}=1,\left(1+\varepsilon_{0}\right)\|A R x\|_{2} \geq\|S A R x\|_{2}=1$

$$
\begin{equation*}
\left.\kappa(A R)=\frac{\sup _{\|x\|_{2}=1}\|A R x\|_{2}}{\|x\|_{2}=1} \right\rvert\,\|A R x\|_{2} \quad \leq \frac{1+\varepsilon_{0}}{1-\varepsilon_{0}} \tag{13}
\end{equation*}
$$

Aside: if we want $\kappa(A R)=1$, then $A R=U$.

2.2 Finding a Constant Factor Solution

Let S be a $\left(1+\varepsilon_{0}\right)$-subspace embedding for $A R$; we can then solve $x_{0}=\operatorname{argmin}_{x}\|S A R x-S b\|_{2}$. If we compute $S A$ first then $S A R$, then the time to compute R and x_{0} is $\mathrm{nnz}(A)+\operatorname{poly}(d)$ for constant ε_{0}, which is really good for gradient descent with an initial point x_{0}.
The gradient descent algorithm is as follows:

$$
\begin{equation*}
x_{m+1} \leftarrow x_{m}+R^{T} A^{T}\left(b-A R x_{m}\right) \tag{14}
\end{equation*}
$$

with the second term being the gradient in linear regression.
Looking at the regression task for a step m, we see that

$$
\begin{align*}
A R\left(x_{m+1}-x^{*}\right) & =A R\left(x_{m}+R^{T} A^{T}\left(b-A R x_{m}\right)-x^{*}\right) \tag{15}\\
& =A R x_{m}+A R R^{T} A^{T} b-A R R^{T} A^{T} A R x_{m}-A R x^{*} \tag{16}
\end{align*}
$$

since $x^{*}=\min _{x}\|A R x-b\|$, we have $R^{T} A^{T} b=R^{T} A^{T} A R x^{*}$, therefore

$$
\begin{align*}
A R\left(x_{m+1}-x^{*}\right) & =\left(A R-A R R^{T} A^{T} A R\right)\left(x_{m}-x^{*}\right) \tag{17}\\
& =U\left(\Sigma-\Sigma^{3}\right) V^{T}\left(x_{m}-x^{*}\right) \tag{18}
\end{align*}
$$

with the last line stemming from an SVD on $A R$: given $A R=U \Sigma V^{T}, A R-A R R^{T} A^{T} A R=$ $U \Sigma V^{T}-U \Sigma V^{T} V \Sigma U^{T} U \Sigma V^{T}=U \Sigma V^{T}-U \Sigma \Sigma \Sigma V^{T}$. The singular value matrices at this point have elements
$\Sigma=\left[\begin{array}{ccc}1+\varepsilon_{0} & & \\ & \ddots & \\ & & 1-\varepsilon_{0}\end{array}\right] \quad \Sigma^{3}=\left[\begin{array}{lll}\sim 1+3 \varepsilon_{0} & & \\ & \ddots & \\ & & \sim 1-3 \varepsilon_{0}\end{array}\right] \quad \Sigma-\Sigma^{3}=\left[\begin{array}{lll} \pm O\left(\varepsilon_{0}\right) & & \\ & \ddots & \\ & & \pm O\left(\varepsilon_{0}\right)\end{array}\right]$

Observing the magnitude of a step, we have:

$$
\begin{align*}
\left\|A R\left(x_{m+1}-x^{*}\right)\right\|_{2} & =\left\|\left(\Sigma-\Sigma^{3}\right) V^{T}\left(x_{m}-x^{*}\right)\right\|_{2} \tag{20}\\
& =O\left(\varepsilon_{0}\right)\left\|A R\left(x_{m}-x^{*}\right)\right\|_{2} \tag{21}\\
& =O\left(\varepsilon_{0}\right)^{m+1}\left\|A R\left(x_{0}-x^{*}\right)\right\|_{2} \tag{22}
\end{align*}
$$

using the property that

$$
\begin{aligned}
\left\|\left(\Sigma-\Sigma^{3}\right) V^{T}\left(x_{m}-x^{*}\right)\right\|_{2} & \leq O\left(\varepsilon_{0}\right)\left\|V^{T}\left(x_{m}-x^{*}\right)\right\|_{2} \\
& \leq \frac{O\left(\varepsilon_{0}\right)}{1-\varepsilon_{0}}\left\|\Sigma V^{T}\left(x_{m}-x^{*}\right)\right\|_{2} \\
& =O\left(\varepsilon_{0}\right)\left\|U \Sigma V^{T}\left(x_{m}-x^{*}\right)\right\|_{2} \\
& =O\left(\varepsilon_{0}\right)\left\|A R\left(x_{m}-x^{*}\right)\right\|_{2}
\end{aligned}
$$

If we set $O\left(\varepsilon_{0}\right)=1 / 2$ and $m=\log \left(1 \varepsilon_{0}\right)$, then $\left\|A R\left(x_{m+1}-x^{*}\right)\right\|_{2}=\varepsilon_{0}\left\|A R\left(x_{0}-x^{*}\right)\right\|_{2}$, and by Pythagorean theorem, between $A R x_{0}, A R x^{*}$, and b, we can show that $\left\|A R\left(x_{m+1}-x^{*}\right)\right\|_{2} \leq$ $O\left(\varepsilon_{0}\right) \mathrm{OPT}$.

The final tally for runtime is:

1. $\mathrm{nnz}(A)+\mathrm{poly}(d)$ for finding preconditioner R.
2. $\mathrm{nnz}(A)+\operatorname{poly}(d)$ for $O(1)$ approximation of x_{0}.
3. $O(\log (1 / \varepsilon))(\mathrm{nnz}(A)+\mathrm{poly}(d))$ for gradient descent updates.

Adding them together yields a time complexity of $\operatorname{poly}(d) \log (1 / \varepsilon)$ as desired.

