CS 15-851: Algorithms for Big Data Spring 2024

Lecture 4 — 02/08/2024
Prof. David Woodruff Scribe: Harry H. Jiang

1 Low-Rank Approximation

Reminder: the goal of LoRA is to output a rank k£ matrix A" such that |[|A—A'||p < (1+¢)||A—Ak||F
where Ay, is the k-rank approximation of A. This can be done in nnz(A)+(n + d)poly(k/e) time.

So far, the algorithm is to:

1. Compute SA
2. Project each of the rows of A onto SA

3. Find best rank-k approximation of projected points inside the rowspace of SA.

We know previously that |[Ax(SAx)~SA — A||% < (1 +¢€)||Ax — Al|%. From this, we can determine
that
min [|XSA - Allp < ||Ax(SAx)TSA - Al < (1 +e)l|A - AllE (1)

rank-k matrix X

By the normal equations we when have ,
IXSA— All} = ||XSA— A(SA)”SA||% + || A(SA)~SA - All% (2)

where the last last term is A minus the projection of A onto SA (or, with SVD, P4 = (SA)”"SA =
VEUTUSVT = VVT); there exists a difference between it and the left-hand side due to the
requirement of X to be of rank k. Removing the second term in the above from the minimum, we
obtain

min [XSA— Alf} = [[A(SA)"SA— A} + min [|XSA - A(SA)"SA|} (3)

We can then apply SVD to SA and write it as SA = UXVT as a “thin” SVD (meaning ¥ is of
width rank(SA) and the bottom rows of V7 are discarded) where SA € R¥*4 7 € R**% ¥ € R**,
VT € R**? and s =poly(k/e) We can notice that
min || XSA— A(SA)”SA||% = min [|XUS — A(SA)" US| (4)
rank-k X ran
where X € R"* and UX € R***. V7T is discarded due to its norm-preserving properties. Performing
an s x s change of basis Y = XUX, we have

r{(lil?XHXSA—A(SA)_SAH%: mln ||Y A(SA)US||% (5)

We can then compute the SVD of A(SA)"UX. This is better than naive SVD, but multiplying
Ax (SA)~UY is still slow, thus step 2 in the LoRA algorithm becomes a bottleneck in computation.

1.1 Sketching Projection onto SA

We use sketching to approximate the projection in order to achieve the desired runtime:

IXSA—Allf: » min_[[XSAR— AR||} (6)

b x
This can be solved using affine embedding R such that
I XSAR — AR||% = (1 +¢)||XSA — A||3VX (7)
where both AR and SAR can be computed in nnz(A) time.

Solving for minimum rank-k matrix X, we have:

min |IXSAR—AR||% = ||AR(SAR)”"SAR— AR||%+ min |IXSAR—AR(SAR)™SAR||% (8)

with change of bases, all we need to compute is

min ||V — AR(SAR)”SAR| % (9)
where the minimizer Y should be in the row span of SAR and SVD takes npoly(k/e) to compute.
Since Y = X SAR for some X, we can output Y(SAR)~SA in factored form which is cheaper to
compute:

L=UecR™ R=%VT(SAR)"SA e R**4 (10)

2 High Precision Regression

Returning to regression, we aim to find an z’ for which ||Az’ —b||2 < (14¢) min, ||Az —b||2 with high
probability. So far, the algorithms covered for regressions run at poly(d/e). This may sometimes
still be too expensive.

Goal: find an algorithm for regression that runs at poly(d)log(1l/e).
Beyond that, we want to make A “well-conditioned” using a metric

sup || Az]|2

||l|[2=1
K(A) = —/———+ 11
() inf HA$H2 ()
lll[2=1
where the numerator is the highest singular value of A and the denominator is the lowest. To be
“well-conditioned” would then to have a low k(A) as many algorithms’ time complexity depend on
it; we want to minimize this value to O(1) using sketching.

2.1 Small QR Decomposition

Let S be a (1 + gg)-subspace embedding for A. We compute SA € R xd (the row number is
arbitrary as we are dealing with an arbitrary S), then an equivalent QR-factorization SA = QR™!.
eQ R-factorization is to use SVD where Q = U and R~! = V7 which allows for k(SAR) = (Q) = 1

Claim 1. Given k(SAR) = k(Q) =1,

1+ ¢p

AR) =
AR) =

Proof. Evaluate singular value bounds of AR and SAR.
Vo, ||lzl|a = 1, (1 — g9)||ARz||2 < ||SARz||]2 = 1
v, [|z]l2 = 1, (1 + o) ||ARx[]2 = [[SARz][2 = 1

sup ||ARz||2

_ l=ll2=1

+ €0

k(AR) =

|lz|l2=1

Aside: if we want kK(AR) =1, then AR =U.

2.2 Finding a Constant Factor Solution

Let S be a (1 + gg)-subspace embedding for AR; we can then solve xy = argmin

inf ||[ARz|l2 ~ 1—¢o

(12)

(13)

SARz — Sb|s.

If we compute SA first then SAR, then the time to compute R and xg is nnz(A)+poly(d) for

constant g, which is really good for gradient descent with an initial point xg.

The gradient descent algorithm is as follows:

Tmal ¢ T + RTAT(b — ARz,

with the second term being the gradient in linear regression.

Looking at the regression task for a step m, we see that

AR(zy11 — 2*) = AR(2,, + RTAT(b — ARz),) — 2¥)
= ARz, + ARRTATb — ARRT AT ARx,,, — ARz"

since z* = min, ||[ARz — b||, we have RT ATb = RT AT ARx*, therefore

AR(xpy1 —) = (AR — ARRT AT AR) (2, — %)
=U(-23Vv(z, —z*

with the last line stemming from an SVD on AR: given AR = USVT, AR — ARRTATAR =
UsVT —usvTvesuTusvT = UsvVT —ULEx VT, The singular value matrices at this point have

elements

14+ ¢ ~ 1+ 3¢9

1—60 N1—360

:|:O(80)

—~
—_
Ne)

~—

Observing the magnitude of a step, we have:

|AR(zm+1 = 2)]2 = [|(Z =)V (@m — 2")|l2 (20)
= O(e0)[[AR(zm — 27)]|2 (21)
= O(e0)" | AR(z0 — 2”)|2 (22)

using the property that

12 =SV (@m — 29)l2 < O(eo) [V (2m — 27)|l2

O(EO) T *
< ZA\TU) _
< TSV (@ —)l
= 0()||[USVT (2 — 2)|2
= O(c0)|[AR(zm — 7)]|2

If we set O(g9) = 1/2 and m = log(leg), then |[AR(xpm+1 — 2)||2 = eo||[AR(x0 — z*)||2, and
by Pythagorean theorem, between ARxo, ARx*, and b, we can show that ||AR(xm41 — 2%)||2 <
O(e0)0PT.

The final tally for runtime is:

1. nnz(A)+poly(d) for finding preconditioner R.
2. nnz(A)+poly(d) for O(1) approximation of zg.

3. O(log(1/e))(nnz(A)+poly(d)) for gradient descent updates.

Adding them together yields a time complexity of poly(d)log(1l/e) as desired.

	Low-Rank Approximation
	Sketching Projection onto SA

	High Precision Regression
	Small QR Decomposition
	Finding a Constant Factor Solution

