
CS 15-851: Algorithms for Big Data Spring 2024

Lecture 3 — 2/1/2024
Prof. David Woodruff Scribe: Nick Kocurek

1 Birthday Paradox

Claim
CountSketch requires Ω(𝑑2) number of rows to be a subspace embedding

Here is a brief sketch:

Think of the 𝑘 rows as hash buckets. When we multiply 𝑆𝑥 each bucket receives some expression of
±𝑥𝑖, and since there is one non-zero entry per column, each 𝑥𝑖 appears in exactly one bucket. For
a matrix, this just does this for all columns, which ends up throwing signed rows of 𝐴 into the 𝑘
buckets at random.

In order to be a subspace embedding, we need rank(𝑆𝐴) = 𝑑. If we take an example where 𝐴 has
rank 𝑑, then we interpret the above to say that we are throwing 𝑑 balls (signed rows) randomly
into 𝑘 bins. If we have a collision, this means < 𝑑 bins are non-zero, which corresponds to 𝑆𝐴
having < 𝑑 non-zero rows and < 𝑑 rank. To avoid collision with decent probability, we need to take
𝑘 = Ω(𝑑2) bins, as seen in the Birhtday Paradox problem.

2 Affine Embeddings

Want to solve min𝑋 ||𝐴𝑋 − 𝐵||2𝐹 where 𝐴 is tall and thin (𝑛 × 𝑑 with 𝑛 >> 𝑑) but 𝐵 has a lot of
columns. We will try to figure out what properties 𝑆 needs to have to satisfy:

||𝑆𝐴𝑋 − 𝑆𝐵||𝐹 = (1 ± 𝜀)||𝐴𝑋 − 𝐵||𝐹

for all 𝑋 simultaneously. Once again we can assume 𝐴 has orthonormal columns and if we set
𝐵* = 𝐴𝑋* − 𝐵 where 𝑋* is the optimum, this will satisfy the normal equations (just think about
it column by column). Observe that:

||𝑆(𝐴𝑋 − 𝐵)||2𝐹 − ||𝑆𝐵||2𝐹 = ||𝑆𝐴(𝑋 − 𝑋*) + 𝑆(𝐴𝑋* − 𝐵)||2𝐹 − ||𝑆𝐵*||2𝐹
= ||𝑆𝐴(𝑋 − 𝑋*)||2𝐹 + 2 tr

[︁
(𝑋 − 𝑋*)𝑇 𝐴𝑇 𝑆𝑇 𝑆𝐵*

]︁
(Fact 1)

∈ ||𝑆𝐴(𝑋 − 𝑋*)||2𝐹 ± 2||𝑋 − 𝑋*||𝐹 ||𝐴𝑇 𝑆𝑇 𝑆𝐵*||𝐹 (Fact 2)
∈ ||𝑆𝐴(𝑋 − 𝑋*)||2𝐹 ± 2𝜀||𝑋 − 𝑋*||𝐹 ||𝐵*||𝐹 (Approx. mat. prod.)
≤ ||𝐴(𝑋 − 𝑋*)||2𝐹 ± 𝜀(||𝐴(𝑋 − 𝑋*)||2𝐹 + 2||𝑋 − 𝑋*||𝐹 ||𝐵*||𝐹 (𝑆 s.e.)

1

where the facts are basic matrix inequalities that we will postpone proving until later. The third
and fourth steps use previous properties of the matrix 𝑆, which we have shown work if we choose 𝑆
correctly and with a sufficient number of rows.

In all above we have:

||𝑆(𝐴𝑋 − 𝐵)||2𝐹 − ||𝑆𝐵*||2𝐹 ∈ ||𝐴(𝑋 − 𝑋*)||2𝐹 ± 𝜀(||𝐴(𝑋 − 𝑋*)||2𝐹 + 2||𝑋 − 𝑋*||𝐹 ||𝐵*||𝐹)

The normal equations tell us ||𝐴𝑋 − 𝐵||2𝐹 = ||𝐴(𝑋 − 𝑋*)||2𝐹 + ||𝐵*||2𝐹 . Geometrically we imagine
for each column 𝑋𝑖 in 𝑋, 𝐴𝑋𝑖 is some point in the column space of 𝐴. The columns 𝐵𝑖 are points
(potentially) not in the column space. Like in regression, we have that 𝐴𝑋*

𝑖 is the closest point to
𝐵𝑖 in the column space. If we calculate the distance between these two points we get:

𝐵*
𝑖 = 𝐴𝑋*

𝑖 − 𝐵𝑖

which makes up the term ||𝐵*||𝐹 . We then look at the distance between 𝐴𝑋𝑖 and 𝐴𝑋*
𝑖 and this

makes up ||𝐴(𝑋 − 𝑋*)||𝐹 . Collating Pythagorean theorems gives us in whole the normal equations.

This allows us to say something about the approximation above:

||𝑆(𝐴𝑋 − 𝐵)||2𝐹 − ||𝑆𝐵*||2𝐹 − (||𝐴𝑋 − 𝐵||2𝐹 − ||𝐵*||2𝐹) ∈ 𝜀(||𝐴(𝑋 − 𝑋*))||2𝐹 + 2||𝑋 − 𝑋*||𝐹 ||𝐵*||𝐹)
∈ ±𝜀(||𝐴(𝑋 − 𝑋*))||𝐹 + ||𝐵*||𝐹)2

∈ ±2𝜀(||𝐴(𝑋 − 𝑋*))||2𝐹 + ||𝐵*||2𝐹)
= ±2𝜀||𝐴𝑋 − 𝐵||2𝐹

which tells us the error from our subspace embedding is approximately 2𝜀||𝐴𝑋 − 𝐵||2𝐹 . Using a fact
||𝑆𝐵*||2𝐹 = (1 ± 𝜀)||𝐵*||2𝐹 proved below, we can rearrange this further to:

||𝑆(𝐴𝑋 − 𝐵)||2𝐹 = (1 ± 2𝜀)||𝐴𝑋 − 𝐵||2𝐹 ± 𝜀||𝐵*||2𝐹
= (1 ± 3𝜀)||𝐴𝑋 − 𝐵||2𝐹

which tells us that 𝑆 is a (1 + 3𝜀)-affine embedding for 𝑋.

Cleaning up the missing facts:

Fact 1: ||𝐴 + 𝐵||2𝐹 || = ||𝐴||2𝐹 + ||𝐵||2𝐹 + 2 tr(𝐴𝑇 𝐵)

Proof:

||𝐴 + 𝐵||2𝐹 =
∑︁

𝑖

|𝐴𝑖 + 𝐵𝑖|22 (Def. of || · ||𝐹 and | · |2)

=
∑︁

𝑖

|𝐴𝑖|22 +
∑︁

𝑖

|𝐵𝑖|22 + 2⟨𝐴𝑖, 𝐵𝑖⟩ (Like (𝑎 + 𝑏)2 = 𝑎2 + 2𝑎𝑏 + 𝑏2 but for | · |2)

= ||𝐴||2𝐹 + ||𝐵||2𝐹 + 2 tr(𝐴𝑇 𝐵) (Def. of norms and trace)

Fact 2: tr(𝐴𝐵) ≤ ||𝐴||𝐹 ||𝐵||𝐹

2

Proof:

tr(𝐴𝐵) =
∑︁

𝑖

⟨𝐴𝑖, 𝐵𝑖⟩ (𝐴𝑖 are rows, 𝐵𝑖 cols)

≤
∑︁

𝑖

|𝐴𝑖|2|𝐵𝑖|2 (Cauchy-Schwarz)

≤

⎯⎸⎸⎸⎷(︃∑︁
𝑖

|𝐴𝑖|22

)︃ 1
2
(︃∑︁

𝑖

|𝐵𝑖|22

)︃ 1
2

(Cauchy-Schwarz)

= ||𝐴||𝐹 ||𝐵||𝐹 (Def. of || · ||𝐹)

Fact 3: ||𝑆𝐵*||2𝐹 = (1 ± 𝜀)||𝐵*||2𝐹 with constant probability if 𝑆 is a CountSketch matrix with
𝑘 = 𝑂

(︁
1
𝜀2

)︁
.

Proof:

From the Fall 2017 iteration of this course Homework 1 Problem 3.

In summary, we have the following:

Theorem 2.1: Affine Embedding

𝑆 satisfies with decent probability for all 𝑋:

||𝑆(𝐴𝑋 − 𝐵)||2𝐹 = (1 ± 𝜀)||𝐴𝑋 − 𝐵||2𝐹

Given that 𝑆 satisfies:

1. Subspace embedding for colspace(𝐴)

2. Approximate matrix product

3. Preserves norm of a fixed matrix

For CountSketch to satisfy these three, we need 𝑂
(︁

𝑑2

𝜀2

)︁
rows, which is importantly not dependent

on the dimensions of 𝐵.

3 Low Rank Approximation

Suppose 𝐴 is an 𝑛 × 𝑑 matrix representing data. 𝐴 might be high rank because of noise in the data,
but can really be approximated by a low rank matrix approximating 𝐴. This will be easier to store
and will remove the noise, making the data more interpretable.

3

http://www.cs.cmu.edu/afs/cs/user/dwoodruf/www/teaching/15859-fall17/ps1sol.pdf

Recall the Singular Value Decomposition:

𝐴 = 𝑈Σ𝑉

where:

• 𝑈 has orthonormal columns

• Σ is diagonal with non-increasing positive entries down the diagonal (singular values)

• 𝑉 has orthonormal rows

One thing we can do is take Σ and take the smallest but 𝑘 singular values and zero them out. This
turns Σ (and thus 𝐴) into a rank 𝑘 matrix, and since we got rid of the smaller singular values, we
imagine this might be a good rank-𝑘 approximation. This is called the truncated singular value
decomposition, and is equivalent to taking the top 𝑘 principal components. We can then write:

𝐴 = 𝑈𝑘Σ𝑘𝑉𝑘 + 𝐸

where the subscript 𝑘 tells us the truncation and 𝐸 is just the error. If we write 𝐴𝑘 = 𝑈𝑘Σ𝑘𝑉𝑘 we
have a good characterization of how good a low rank approximation this is:

𝐴𝑘 = argmin𝑘-rank matrices 𝐵]||𝐴 − 𝐵||𝐹

In the end, SVD is slow to calculate, so in the low rank approximation problem, we set out to find
𝐴′ so that:

||𝐴 − 𝐴′||𝐹 ≤ (1 + 𝜀)||𝐴 − 𝐴𝑘||𝐹

and our goal will be the following claim:

Claim
There is (1 + 𝜀)-approximation algorithm for low rank approximation that runs in nnz(𝐴) +
(𝑛 + 𝑑) · poly

(︁
𝑘
𝜀

)︁
time and succeeds w.h.p.

Here is our approach:

Compute 𝑆𝐴 where 𝑆 is a random matrix with 𝑘/𝜀 << 𝑛 rows, which is thought of as 𝑘/𝜀-
dimensional random subspace. If we run SVD on 𝑆𝐴, it will take 𝑛

(︁
𝑘
𝜀

)︁2
time rather than 𝑛𝑑2 for

the 𝑑-dimensional subspace of 𝐴. As usual we will hope that the optimal low rank approximation
𝑆𝐴𝑘 will be approximate for the large subspace of 𝐴.

Various matrices work for 𝑆:

• 𝑘/𝜀 × 𝑛 Random Gaussian (i.i.d. normals)

• �̃�(𝑘/𝜀) × 𝑛 Fast Johnson Lindenstrauss

• poly(𝑘/𝜀) × 𝑛 CountSketch

4

Here is a brief sketch of why this approach might work:

Consider the regression problem min𝑋 ||𝐴𝑘𝑋 − 𝐴||𝐹 . The best approximation 𝐴𝑘𝑋 is 𝐴𝑘 by
definition, so 𝑋 = 𝐼 solves this. If 𝑆 is an affine embedding we have:

||𝑆𝐴𝑘𝑋 − 𝑆𝐴||𝐹 = (1 ± 𝜀)||𝐴𝑘𝑋 − 𝐴||𝐹

Since the matrix is rank 𝑘, 𝑆 will work with rows dependent on 𝑘 instead of 𝑑 (can confirm in all
proofs that the rank is important, not the latent dimension). By the normal equations:

argmin𝑋 ||𝑆𝐴𝑘𝑋 − 𝑆𝐴||𝐹 = (𝑆𝐴𝑘)−𝑆𝐴

giving us:
||𝐴𝑘(𝑆𝐴𝑘)−𝑆𝐴 − 𝐴||𝐹 ≤ (1 + 𝜀)||𝐴𝑘 − 𝐴||𝐹

The trick is that 𝐴𝑘(𝑆𝐴𝑘)−𝑆𝐴, which we shouldn’t hope to know, is a good approximation, but
moreover this is a rank 𝑘 matrix in the row span of 𝑆𝐴! That means if we find it by SVD, or find a
better one, it is at least as good as this approximation here.

5

	Birthday Paradox
	Affine Embeddings
	Low Rank Approximation

