Lecture $3-2 / 1 / 2024$
Prof. David Woodruff
Scribe: Nick Kocurek

1 Birthday Paradox

Claim

CountSketch requires $\Omega\left(d^{2}\right)$ number of rows to be a subspace embedding

Here is a brief sketch:
Think of the k rows as hash buckets. When we multiply $S x$ each bucket receives some expression of $\pm x_{i}$, and since there is one non-zero entry per column, each x_{i} appears in exactly one bucket. For a matrix, this just does this for all columns, which ends up throwing signed rows of A into the k buckets at random.

In order to be a subspace embedding, we need $\operatorname{rank}(S A)=d$. If we take an example where A has rank d, then we interpret the above to say that we are throwing d balls (signed rows) randomly into k bins. If we have a collision, this means $<d$ bins are non-zero, which corresponds to $S A$ having $<d$ non-zero rows and $<d$ rank. To avoid collision with decent probability, we need to take $k=\Omega\left(d^{2}\right)$ bins, as seen in the Birhtday Paradox problem.

2 Affine Embeddings

Want to solve $\min _{X}\|A X-B\|_{F}^{2}$ where A is tall and thin $(n \times d$ with $n \gg d)$ but B has a lot of columns. We will try to figure out what properties S needs to have to satisfy:

$$
\|S A X-S B\|_{F}=(1 \pm \varepsilon)\|A X-B\|_{F}
$$

for all X simultaneously. Once again we can assume A has orthonormal columns and if we set $B^{*}=A X^{*}-B$ where X^{*} is the optimum, this will satisfy the normal equations (just think about it column by column). Observe that:

$$
\begin{aligned}
\|S(A X-B)\|_{F}^{2}-\|S B\|_{F}^{2} & =\left\|S A\left(X-X^{*}\right)+S\left(A X^{*}-B\right)\right\|_{F}^{2}-\left\|S B^{*}\right\|_{F}^{2} \\
& =\left\|S A\left(X-X^{*}\right)\right\|_{F}^{2}+2 \operatorname{tr}\left[\left(X-X^{*}\right)^{T} A^{T} S^{T} S B^{*}\right] \quad \text { (Fact 1) } \\
& \in\left\|S A\left(X-X^{*}\right)\right\|_{F}^{2} \pm 2\left\|X-X^{*}\right\|_{F}\left\|A^{T} S^{T} S B^{*}\right\|_{F} \quad \text { (Fact 2) } \\
& \in\left\|S A\left(X-X^{*}\right)\right\|_{F}^{2} \pm 2 \varepsilon\left\|X-X^{*}\right\|_{F}\left\|B^{*}\right\|_{F} \quad \text { (Approx. mat. prod.) } \\
& \leq\left\|A\left(X-X^{*}\right)\right\|_{F}^{2} \pm \varepsilon\left(\left\|A\left(X-X^{*}\right)\right\|_{F}^{2}+2\left\|X-X^{*}\right\|_{F}\left\|B^{*}\right\|_{F} \quad\right. \text { (S s.e.) }
\end{aligned}
$$

where the facts are basic matrix inequalities that we will postpone proving until later. The third and fourth steps use previous properties of the matrix S, which we have shown work if we choose S correctly and with a sufficient number of rows.

In all above we have:

$$
\|S(A X-B)\|_{F}^{2}-\left\|S B^{*}\right\|_{F}^{2} \in\left\|A\left(X-X^{*}\right)\right\|_{F}^{2} \pm \varepsilon\left(\left\|A\left(X-X^{*}\right)\right\|_{F}^{2}+2\left\|X-X^{*}\right\|_{F}\left\|B^{*}\right\| F\right)
$$

The normal equations tell us $\|A X-B\|_{F}^{2}=\left\|A\left(X-X^{*}\right)\right\|_{F}^{2}+\left\|B^{*}\right\|_{F}^{2}$. Geometrically we imagine for each column X_{i} in $X, A X_{i}$ is some point in the column space of A. The columns B_{i} are points (potentially) not in the column space. Like in regression, we have that $A X_{i}^{*}$ is the closest point to B_{i} in the column space. If we calculate the distance between these two points we get:

$$
B_{i}^{*}=A X_{i}^{*}-B_{i}
$$

which makes up the term $\left\|B^{*}\right\|_{F}$. We then look at the distance between $A X_{i}$ and $A X_{i}^{*}$ and this makes up $\left\|A\left(X-X^{*}\right)\right\|_{F}$. Collating Pythagorean theorems gives us in whole the normal equations.

This allows us to say something about the approximation above:

$$
\begin{aligned}
\|S(A X-B)\|_{F}^{2}-\left\|S B^{*}\right\|_{F}^{2}-\left(\|A X-B\|_{F}^{2}-\left\|B^{*}\right\|_{F}^{2}\right) & \left.\in \varepsilon\left(\| A\left(X-X^{*}\right)\right)\left\|_{F}^{2}+2\right\| X-X^{*}\left\|_{F}\right\| B^{*} \|_{F}\right) \\
& \left.\in \pm \varepsilon\left(\| A\left(X-X^{*}\right)\right)\left\|_{F}+\right\| B^{*} \|_{F}\right)^{2} \\
& \left.\in \pm 2 \varepsilon\left(\| A\left(X-X^{*}\right)\right)\left\|_{F}^{2}+\right\| B^{*} \|_{F}^{2}\right) \\
& = \pm 2 \varepsilon\|A X-B\|_{F}^{2}
\end{aligned}
$$

which tells us the error from our subspace embedding is approximately $2 \varepsilon\|A X-B\|_{F}^{2}$. Using a fact $\left\|S B^{*}\right\|_{F}^{2}=(1 \pm \varepsilon)\left\|B^{*}\right\|_{F}^{2}$ proved below, we can rearrange this further to:

$$
\begin{aligned}
\|S(A X-B)\|_{F}^{2} & =(1 \pm 2 \varepsilon)\|A X-B\|_{F}^{2} \pm \varepsilon\left\|B^{*}\right\|_{F}^{2} \\
& =(1 \pm 3 \varepsilon)\|A X-B\|_{F}^{2}
\end{aligned}
$$

which tells us that S is a $(1+3 \varepsilon)$-affine embedding for X.

Cleaning up the missing facts:

Fact 1: $\|A+B\|_{F}^{2}\|=\| A\left\|_{F}^{2}+\right\| B \|_{F}^{2}+2 \operatorname{tr}\left(A^{T} B\right)$
Proof:

$$
\begin{array}{rlr}
\|A+B\|_{F}^{2} & =\sum_{i}\left|A_{i}+B_{i}\right|_{2}^{2} & \left.\quad \text { (Def. of }\|\cdot\|_{F} \text { and }|\cdot|_{2}\right) \\
& =\sum_{i}\left|A_{i}\right|_{2}^{2}+\sum_{i}\left|B_{i}\right|_{2}^{2}+2\left\langle A_{i}, B_{i}\right\rangle & \left(\text { Like }(a+b)^{2}=a^{2}+2 a b+b^{2} \text { but for }|\cdot|_{2}\right) \\
& =\|A\|_{F}^{2}+\|B\|_{F}^{2}+2 \operatorname{tr}\left(A^{T} B\right) & \text { (Def. of norms and trace) }
\end{array}
$$

Fact 2: $\operatorname{tr}(A B) \leq\|A\|_{F}\|B\|_{F}$

Proof:

$$
\begin{array}{rlr}
\operatorname{tr}(A B) & =\sum_{i}\left\langle A^{i}, B_{i}\right\rangle & \left(A^{i} \text { are rows, } B_{i}\right. \text { cols) } \\
& \leq \sum_{i}\left|A^{i}\right|_{2}\left|B_{i}\right|_{2} & \text { (Cauchy-Schwarz) } \\
& \leq \sqrt{\left(\sum_{i}\left|A_{i}\right|_{2}^{2}\right)^{\frac{1}{2}}\left(\sum_{i}\left|B_{i}\right|_{2}^{2}\right)^{\frac{1}{2}}} & \text { (Cauchy-Schwarz) } \\
& =\|A\| F| | B \|_{F} & \text { (Def. of } \left.\|\cdot\|_{F}\right)
\end{array}
$$

Fact 3: $\left\|S B^{*}\right\|_{F}^{2}=(1 \pm \varepsilon)\left\|B^{*}\right\|_{F}^{2}$ with constant probability if S is a CountSketch matrix with $k=O\left(\frac{1}{\varepsilon^{2}}\right)$.

Proof:

From the Fall 2017 iteration of this course Homework 1 Problem 3.

In summary, we have the following:

Theorem 2.1: Affine Embedding

S satisfies with decent probability for all X :

$$
\|S(A X-B)\|_{F}^{2}=(1 \pm \varepsilon)\|A X-B\|_{F}^{2}
$$

Given that S satisfies:

1. Subspace embedding for colspace (A)
2. Approximate matrix product
3. Preserves norm of a fixed matrix

For CountSketch to satisfy these three, we need $O\left(\frac{d^{2}}{\varepsilon^{2}}\right)$ rows, which is importantly not dependent on the dimensions of B.

3 Low Rank Approximation

Suppose A is an $n \times d$ matrix representing data. A might be high rank because of noise in the data, but can really be approximated by a low rank matrix approximating A. This will be easier to store and will remove the noise, making the data more interpretable.

Recall the Singular Value Decomposition:

$$
A=U \Sigma V
$$

where:

- U has orthonormal columns
- Σ is diagonal with non-increasing positive entries down the diagonal (singular values)
- V has orthonormal rows

One thing we can do is take Σ and take the smallest but k singular values and zero them out. This turns Σ (and thus A) into a rank k matrix, and since we got rid of the smaller singular values, we imagine this might be a good rank- k approximation. This is called the truncated singular value decomposition, and is equivalent to taking the top k principal components. We can then write:

$$
A=U_{k} \Sigma_{k} V_{k}+E
$$

where the subscript k tells us the truncation and E is just the error. If we write $A_{k}=U_{k} \Sigma_{k} V_{k}$ we have a good characterization of how good a low rank approximation this is:

$$
A_{k}=\operatorname{argmin}_{k \text {-rank matrices } B]}\|A-B\|_{F}
$$

In the end, SVD is slow to calculate, so in the low rank approximation problem, we set out to find A^{\prime} so that:

$$
\left\|A-A^{\prime}\right\|_{F} \leq(1+\varepsilon)\left\|A-A_{k}\right\|_{F}
$$

and our goal will be the following claim:

Claim

There is $(1+\varepsilon)$-approximation algorithm for low rank approximation that runs in $n n z(A)+$ $(n+d) \cdot$ poly $\left(\frac{k}{\varepsilon}\right)$ time and succeeds w.h.p.

Here is our approach:
Compute $S A$ where S is a random matrix with $k / \varepsilon \ll n$ rows, which is thought of as k / ε dimensional random subspace. If we run SVD on $S A$, it will take $n\left(\frac{k}{\varepsilon}\right)^{2}$ time rather than $n d^{2}$ for the d-dimensional subspace of A. As usual we will hope that the optimal low rank approximation $S A_{k}$ will be approximate for the large subspace of A.

Various matrices work for S :

- $k / \varepsilon \times n$ Random Gaussian (i.i.d. normals)
- $\tilde{O}(k / \varepsilon) \times n$ Fast Johnson Lindenstrauss
- $\operatorname{poly}(k / \varepsilon) \times n$ CountSketch

Here is a brief sketch of why this approach might work:

Consider the regression problem $\min _{X}\left\|A_{k} X-A\right\|_{F}$. The best approximation $A_{k} X$ is A_{k} by definition, so $X=I$ solves this. If S is an affine embedding we have:

$$
\left\|S A_{k} X-S A\right\|_{F}=(1 \pm \varepsilon)\left\|A_{k} X-A\right\|_{F}
$$

Since the matrix is rank k, S will work with rows dependent on k instead of d (can confirm in all proofs that the rank is important, not the latent dimension). By the normal equations:

$$
\operatorname{argmin}_{X}\left\|S A_{k} X-S A\right\|_{F}=\left(S A_{k}\right)^{-} S A
$$

giving us:

$$
\left\|A_{k}\left(S A_{k}\right)^{-} S A-A\right\|_{F} \leq(1+\varepsilon)\left\|A_{k}-A\right\|_{F}
$$

The trick is that $A_{k}\left(S A_{k}\right)-S A$, which we shouldn't hope to know, is a good approximation, but moreover this is a rank k matrix in the row span of $S A$! That means if we find it by SVD, or find a better one, it is at least as good as this approximation here.

