CS 15-851: Algorithms for Big Data Spring 2024

Lecture 3 — 02/01/2024
Prof. David Woodruff Scribe: Harrison Wiseblatt

1 Approximate matrix product guarantees

1.1 From vectors to matrices

In this section, we prove the following theorem:

Theorem 1. Fore,§ € (0,3), if D is a distribution on matrices S € R¥*™ that satisfies the (,6,1)-JL
moment property for some l > 2, then we have for any matrices A, B with n rows

P[|ATSTSB — A"B|r > 3¢|A|p|B|r] <6

As a reminder,
Definition. A distribution on matrices S € R¥*™ has the (¢, §,1)-JL. moment property if Yz € R" with

|z|2 = 1, we have Eg||Sz|3 —1|' <€ -6

Also, recall last time we used, for a random scalar X, the p-norm. This is defined as |X|, = (E|X|?)'/?, and
for p > 1 we have Minkowski’s inequality which says that

(X + Y], < [X[p + Y,

Proof of theorem 1. Last lecture, we proved that for arbitrary vectors x,y with constant probability,

|<S£L’, Sy> — <x7y>|l

< 3e * 5T
|2|2]yl2

assuming S satisfies the (e, d,1)-JL moment property

Now, if we define X; ; = m - ((SA;, SBj) — (Ai, Bj)), we can rearrange terms to get

)

|ATSTSB — ATB3. =" A} - 1B 3X2,
J

Want to show P[|CSTSD — CD|% < |
gives an approximate matrix product).

* |C|%|D|%] > 1 —§ (ie., with constant probability S

Trmumows ofS)
d+*num rows of S



|ATSTSB — ATB%|, ,

= | Z Z |Ai|31B; 13X 7511/ (Plug in A;, B; as above)

< i i |A;|3 - |Bj|§|Xi2,j|l/2 (Triangle inequality for 1/2 norm)
i

=3 > A3 - B;I31Xi 417 (1X 12 = 1X20)
iog

< (3e51)* Y0 D 14il31B; 13 (JL-moment property (property (*) above))

= (366%)2|1‘;|%‘JB‘% (Definition of Frobenius norm)

Note that E[|ATSTSB — ATB|,.] = ||ATSTSB — AT B|2|"/* (by definition of 1 and /2 norms).
2

Now, we can apply Markov’s inequality (using that
P [|(ATSTSB — ATB|p)V/ > (3€|A|F|B|F)1/l] a=P[|ATSTSB — ATB]r > 3¢|A|r|B|F]) to get

1 l
|B|F> E[|ATSTSB — ATB|L. < §

P[|ATSTSB - A"B Alp|Blp] € | s —a
JATSTSB - A7 Ble > 3elAle|Ble] < (3

1.2 Proof that CountSketch satisfies the JL property

So, we have shown that if CountSketch satisfies the JL-moment property, then it is an approximate matrix
product. So, now we just need to show that it satisfies the JL-moment property. Luckily, we have the
following theorem:

Theorem 2. The distribution D over CountSketch matrices satisfies the (g,9,1)-JL moment property for
=2

This will just involve doing an elementary second moment argument with no super deep math facts. We’ll
show it for [ = 2 since that is the smallest that worked above (because we needed triangle inequality of the %
norm above so we needed £ > 1).

We’ll require some basic hashing definitions for this proof

Definition. A hash function h : [n] — [m] is k-wise independent if Vi; # iy # - - # ig, Vi1, j2, - - Jk € [M]
we have P[h(i1) = j1 A h(iz) = ja A -+ h(iy) = ji] = % (ie., the elements independent and uniform over the
output)

Also, k-wise independence gives us the following neat (but irrelevant for the sake of our proof) fact:

Fact 1. 2 and 4-wise independent hash function can be stored with O(lgn) bits.

Proof of theorem 2. Consider Es[|Sxz|3]. For a CountSketch matrix S, let h: {1,2,--- ,n} — {1,2,---  k}
define the location of the non-zero entry on the column, and let o : {1,2,--- ,n} — {1, -1} give the sign of



the non-zero entry in column ¢ (so S is parameterized exactly by h and o).

We only need h to be a 2-wise independent hash function and o : [n] — {—1,1} to be 4-wise independent
(and h and ¢ independent of each other). This means that we can store S with only O(lgn) bits.

Notation: Let §(E) be the indicator for event E.

Note that E[|Sz|3] = > e Bl ey 6(h(2) = j)oiz;)?], by applying linearity of expectation and noting
that the (7, ) element in the matrix only contributes to the ith entry in the vector when é(h(i) = j) =1, in
which case it has value o;x;. Then,

B[|Sz[3]
= 2 El()_ 8(h(i) = j)ow)’]
JE€[k] 1€[n]
= Z Z 3)6(h( ) :j)o’ilgiz}xilxiz
JE[K] i1,i2€[n]
(Linearity of expectation again by expanding the square)
If 41 # 4o, then
> Y Eloi]Elon,)E[B(h(iy) = §)(hiz) = )], i, (2-wise independence of o)
JE[k] i1,i2€[n]
=0

So, we have

Z Z E[é(h(zl) = ])5(h(7’2) = j)0i10i2]xi1m’i2

J€[k] i1,i2€[n]

= Z Z E[6(h(i) = j)*]«? (Clear terms where i; and i3 are not equal)
jE(k] i€[n]
1
=— Z Z z? (Square of an indicator is itself an indicator)
jelk] i€[n]
= |3

Now, to prove that S satisfies the JL property for [ = 2, we also need to calculate E[|Sxz|3], because that
term appears in the definition when we set [ = 2.

E[|Sa;]

= B[ 3" 8(h(i) = fowrs | (G(h() = j)ova)’]

jelk] 5’ €[k] \i€[n]

= Eloi,0i20i,04,0(h(i1) = j1)d(i2) = j1)d(h(is) = j2)0(h(ia) = jo)|zi, @i, T4,
J1,J2,501,42,J3,%4
(1,12 are from expanding the first squared norm, is,i4 from the second)

By 4-wise independence of o, the only non-zero terms is if i; = i3 = i3 = i4 or there are 2 pairs of equal
values.



Case 1 If i1 = iy = i3 = i4 then necessarily j; = ja (since each column has 1 non-zero entry), so it’s

X% i = lalis

Case 2 If i; = iy and i3 = iy but i; # i3, then we can apply 2-wise independence of h and get
D i i i ia i mrlx? = |z|3 — |z[] (we subtract |z]] because iy # i3 so we don’t get any terms that

look like z#).
Case 3 If i1 = i3 and i = i4 but 97 # i, then we need j; = js for it to not be 0. Then, we get
1 2,2 ~ 1 2 21, 4
Z L2 Z TizTiy = Z 52 Z%ﬂ@ﬂﬂz
J i1,i2,91 Fl2 J 1,12
Note this case is lower bounded by 0.

Case 4 If iy = 14 and i3 = i3, then it’s the same as case 3.

Putting this all together, we get E[|Sz|3] € [|z|3, |x|g1 + 2)] = [1,1+ 2]. The only inexactness came from
cases 3 and 4 where we needed the upper bound.

So, setting k = 52%

2
=25

2
Es||Sz|2 — 1> = Eg[|Sz[3] — 2E[Sz)2 + 1< (1+ =) —2+1= -

k
which is exactly the JL property for | = 2.
|

Recall that we needed P[|CSTSD — CD|% < (6/5k) * |C|%|D|%] > —14, just pattern match and recall

|C|% = |D|% = d since A is orthonormal, set C = AT, D = A and we have the desired result.

To get better failure probability bounds, you can look at higher moments.
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