
CS 15-851: Algorithms for Big Data Spring 2024

Lecture 3 — 02/01/2024
Prof. David Woodruff Scribe: Harrison Wiseblatt

1 Approximate matrix product guarantees

1.1 From vectors to matrices

In this section, we prove the following theorem:

Theorem 1. For ε, δ ∈ (0, 1
2 ), if D is a distribution on matrices S ∈ Rk×n that satisfies the (ε, δ, l)-JL

moment property for some l ≥ 2, then we have for any matrices A, B with n rows

P
[
|AT ST SB − AT B|F ≥ 3ε|A|F |B|F

]
≤ δ

As a reminder,

Definition. A distribution on matrices S ∈ Rk×n has the (ϵ, δ, l)-JL moment property if ∀x ∈ Rn with
|x|2 = 1, we have ES ||Sx|22 − 1|l ≤ ϵl · δ

Also, recall last time we used, for a random scalar X, the p-norm. This is defined as |X|p = (E|X|p)1/p, and
for p ≥ 1 we have Minkowski’s inequality which says that

|X + Y |p ≤ |X|p + |Y |p

Proof of theorem 1. Last lecture, we proved that for arbitrary vectors x, y with constant probability,

|⟨Sx, Sy⟩ − ⟨x, y⟩|l
|x|2|y|2

≤ 3ϵ ∗ δ
1
l

assuming S satisfies the (ϵ, δ, l)-JL moment property

Now, if we define Xi,j = 1
|Ai|2|Bj |2

· (⟨SAi, SBj⟩ − ⟨Ai, Bj⟩), we can rearrange terms to get

|AT ST SB − AT B|2F =
∑

i

∑
j

|Ai|22 · |Bj |22X2
i,j

Want to show P[|CST SD − CD|2F ≤ [ 6
δ∗num rows of S ) ∗ |C|2F |D|2F ] ≥ 1 − δ (ie., with constant probability S

gives an approximate matrix product).
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∣∣|AT ST SB − AT B|2F
∣∣
l/2

= |
∑

i

∑
j

|Ai|22|Bj |22X2
i,j |l/2 (Plug in Ai, Bj as above)

≤
∑

i

∑
j

|Ai|22 · |Bj |22|X2
i,j |l/2 (Triangle inequality for l/2 norm)

=
∑

i

∑
j

|Ai|22 · |Bj |22|Xi,j |2l (|X|l/2 = |X2|l)

≤ (3ϵδ
1
l )2

∑
i

∑
j

|Ai|22|Bj |22 (JL-moment property (property (*) above))

= (3ϵδ
1
l )2|A|2F |B|2F (Definition of Frobenius norm)

Note that E[|AT ST SB − AT B|lF ] = ||AT ST SB − AT B|2F |l/2
l
2

(by definition of l and l/2 norms).

Now, we can apply Markov’s inequality (using that
P

[
|(AT ST SB − AT B|F )1/l > (3ϵ|A|F |B|F )1/l

]
a = P[|AT ST SB − AT B]F > 3ϵ|A|F |B|F ]) to get

P[|AT ST SB − AT B]F > 3ϵ|A|F |B|F ] ≤
(

1
3ϵ|A|F |B|F

)l

E[|AT ST SB − AT B|lF ≤ δ

.

■

1.2 Proof that CountSketch satisfies the JL property

So, we have shown that if CountSketch satisfies the JL-moment property, then it is an approximate matrix
product. So, now we just need to show that it satisfies the JL-moment property. Luckily, we have the
following theorem:

Theorem 2. The distribution D over CountSketch matrices satisfies the (ε, δ, l)-JL moment property for
l = 2

This will just involve doing an elementary second moment argument with no super deep math facts. We’ll
show it for l = 2 since that is the smallest that worked above (because we needed triangle inequality of the l

2
norm above so we needed l

2 ≥ 1).

We’ll require some basic hashing definitions for this proof

Definition. A hash function h : [n] → [m] is k-wise independent if ∀i1 ̸= i2 ̸= · · · ≠ ik, ∀j1, j2, · · · jk ∈ [m]
we have P[h(i1) = j1 ∧ h(i2) = j2 ∧ · · · h(ik) = jk] = 1

mk (ie., the elements independent and uniform over the
output)

Also, k-wise independence gives us the following neat (but irrelevant for the sake of our proof) fact:

Fact 1. 2 and 4-wise independent hash function can be stored with O(lg n) bits.

Proof of theorem 2. Consider ES [|Sx|22]. For a CountSketch matrix S, let h : {1, 2, · · · , n} → {1, 2, · · · , k}
define the location of the non-zero entry on the column, and let σ : {1, 2, · · · , n} → {1, −1} give the sign of
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the non-zero entry in column i (so S is parameterized exactly by h and σ).

We only need h to be a 2-wise independent hash function and σ : [n] → {−1, 1} to be 4-wise independent
(and h and σ independent of each other). This means that we can store S with only O(lg n) bits.

Notation: Let δ(E) be the indicator for event E.

Note that E[|Sx|22] =
∑

j∈[k] E[(
∑

i∈[n] δ(h(i) = j)σixi)2], by applying linearity of expectation and noting
that the (i, j) element in the matrix only contributes to the ith entry in the vector when δ(h(i) = j) = 1, in
which case it has value σixi. Then,

E[|Sx|22]

=
∑
j∈[k]

E[(
∑
i∈[n]

δ(h(i) = j)σixi)2]

=
∑
j∈[k]

∑
i1,i2∈[n]

E[δ(h(i1) = j)δ(h(i2) = j)σi1σi2 ]xi1xi2

(Linearity of expectation again by expanding the square)

If i1 ̸= i2, then∑
j∈[k]

∑
i1,i2∈[n]

E[σi1 ]E[σi2 ]E[δ(h(i1) = j)δ(h(i2) = j)]xi1xi2 (2-wise independence of σ)

= 0

So, we have ∑
j∈[k]

∑
i1,i2∈[n]

E[δ(h(i1) = j)δ(h(i2) = j)σi1σi2 ]xi1xi2

=
∑
j∈[k]

∑
i∈[n]

E[δ(h(i) = j)2]x2
i (Clear terms where i1 and i2 are not equal)

= 1
k

∑
j∈[k]

∑
i∈[n]

x2
i (Square of an indicator is itself an indicator)

= |x|22

Now, to prove that S satisfies the JL property for l = 2, we also need to calculate E[|Sx|42], because that
term appears in the definition when we set l = 2.

E[|Sx|42]

= E[
∑
j∈[k]

∑
j′∈[k]

 ∑
i∈[n]

δ(h(i) = j)σixi

2

(δ(h(i′) = j′)σi′xi′)2]

=
∑

j1,j2,i1,i2,j3,i4

E[σi1σi2σi3σi4δ(h(i1) = j1)δ(i2) = j1)δ(h(i3) = j2)δ(h(i4) = j2)]xi1xi2xi3

(i1, i2 are from expanding the first squared norm, i3, i4 from the second)

By 4-wise independence of σ, the only non-zero terms is if i1 = i2 = i3 = i4 or there are 2 pairs of equal
values.
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Case 1 If i1 = i2 = i3 = i4 then necessarily j1 = j2 (since each column has 1 non-zero entry), so it’s∑
j

1
k

∑
i x4

i = |x|44.

Case 2 If i1 = i2 and i3 = i4 but i1 ̸= i3, then we can apply 2-wise independence of h and get∑
j1,j2,i1,i3,i1 ̸=i3

1
k2 x2

i1
x2

i3
= |x|42 − |x|44 (we subtract |x|44 because i1 ̸= i3 so we don’t get any terms that

look like x4
i ).

Case 3 If i1 = i3 and i2 = i4 but i1 ̸= i2, then we need j1 = j2 for it to not be 0. Then, we get∑
j

1
k2

∑
i1,i2,i1 ̸=i2

x2
i1

x2
i2

≤
∑

j

1
k2

∑
i1,i2

x2
i1

x2
i2

1
k

|x|42

Note this case is lower bounded by 0.

Case 4 If i1 = i4 and i2 = i3, then it’s the same as case 3.

Putting this all together, we get E[|Sx|42] ∈ [|x|42, |x|(21 + 2
k )] = [1, 1 + 2

k ]. The only inexactness came from
cases 3 and 4 where we needed the upper bound.

So, setting k = 2
ε2δ

ES ||Sx|22 − 1|2 = ES [|Sx|42] − 2E[Sx]22 + 1 ≤ (1 + 2
k

) − 2 + 1 = 2
k

= ε2δ

which is exactly the JL property for l = 2.

■

Recall that we needed P[|CST SD − CD|2F ≤ (6/δk) ∗ |C|2F |D|2F ] ≥ −1δ, just pattern match and recall
|C|2F = |D|2F = d since A is orthonormal, set C = AT , D = A and we have the desired result.

To get better failure probability bounds, you can look at higher moments.
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