CS 15-851: Algorithms for Big Data	Spring 2024	
Lecture $3-02 / 01 / 2024$		
Prof. David Woodruff		Scribe: Harrison Wiseblatt

1 Approximate matrix product guarantees

1.1 From vectors to matrices

In this section, we prove the following theorem:
Theorem 1. For $\varepsilon, \delta \in\left(0, \frac{1}{2}\right)$, if D is a distribution on matrices $S \in \mathbb{R}^{k \times n}$ that satisfies the $(\varepsilon, \delta, l)-J L$ moment property for some $l \geq 2$, then we have for any matrices A, B with n rows

$$
\mathbb{P}\left[\left|A^{T} S^{T} S B-A^{T} B\right|_{F} \geq 3 \varepsilon|A|_{F}|B|_{F}\right] \leq \delta
$$

As a reminder,
Definition. A distribution on matrices $S \in \mathbb{R}^{k \times n}$ has the (ϵ, δ, l)-JL moment property if $\forall x \in \mathbb{R}^{n}$ with $|x|_{2}=1$, we have $\left.E_{S}| | S x\right|_{2} ^{2}-\left.1\right|^{l} \leq \epsilon^{l} \cdot \delta$

Also, recall last time we used, for a random scalar X, the p-norm. This is defined as $|X|_{p}=\left(E|X|^{p}\right)^{1 / p}$, and for $p \geq 1$ we have Minkowski's inequality which says that

$$
|X+Y|_{p} \leq|X|_{p}+|Y|_{p}
$$

Proof of theorem 1. Last lecture, we proved that for arbitrary vectors x, y with constant probability,

$$
\frac{|\langle S x, S y\rangle-\langle x, y\rangle|_{l}}{|x|_{2}|y|_{2}} \leq 3 \epsilon * \delta^{\frac{1}{l}}
$$

assuming S satisfies the (ϵ, δ, l)-JL moment property

Now, if we define $X_{i, j}=\frac{1}{\left|A_{i}\right|_{2}\left|B_{j}\right|_{2}} \cdot\left(\left\langle S A_{i}, S B_{j}\right\rangle-\left\langle A_{i}, B_{j}\right\rangle\right)$, we can rearrange terms to get

$$
\left|A^{T} S^{T} S B-A^{T} B\right|_{F}^{2}=\sum_{i} \sum_{j}\left|A_{i}\right|_{2}^{2} \cdot\left|B_{j}\right|_{2}^{2} X_{i, j}^{2}
$$

Want to show $\mathbb{P}\left[\left|C S^{T} S D-C D\right|_{F}^{2} \leq\left[\frac{6}{\delta * \text { num rows of S }}\right) *|C|_{F}^{2}|D|_{F}^{2}\right] \geq 1-\delta$ (ie., with constant probability S gives an approximate matrix product).

$$
\begin{array}{lr}
\| A^{T} S^{T} S B-\left.\left.A^{T} B\right|_{F} ^{2}\right|_{l / 2} \\
=\left.\left.\left|\sum_{i} \sum_{j}\right| A_{i}\right|_{2} ^{2}\left|B_{j}\right|_{2}^{2} X_{i, j}^{2}\right|_{l / 2} & \text { (Plug in } A_{i}, B_{j} \text { as above) } \\
\leq\left.\left.\sum_{i} \sum_{j}\left|A_{i}\right|_{2}^{2} \cdot\left|B_{j}\right|_{2}^{2}\right|_{i, j} ^{2}\right|_{l / 2} & \text { (Triangle inequality for 1/2 norm) } \\
=\sum_{i} \sum_{j}\left|A_{i}\right|_{2}^{2} \cdot\left|B_{j}\right|_{2}^{2}\left|X_{i, j}\right|_{l}^{2} & \left(|X|_{l / 2}=\left|X^{2}\right|_{l}\right) \\
\leq\left(3 \epsilon \delta^{\frac{1}{l}}\right)^{2} \sum_{i} \sum_{j}\left|A_{i}\right|_{2}^{2}\left|B_{j}\right|_{2}^{2} & \text { (JL-moment property (property (*) above)) } \\
=\left(3 \epsilon \delta^{\frac{1}{\tau}}\right)^{2}|A|_{F}^{2}|B|_{F}^{2} & \text { (Definition of Frobenius norm) }
\end{array}
$$

Note that $E\left[\left|A^{T} S^{T} S B-A^{T} B\right|_{F}^{l}\right]=\| A^{T} S^{T} S B-\left.\left.A^{T} B\right|_{F} ^{2}\right|_{\frac{l}{2}} ^{l / 2}$ (by definition of 1 and $l / 2$ norms).
Now, we can apply Markov's inequality (using that $\left.\left.\mathbb{P}\left[\mid\left(A^{T} S^{T} S B-\left.A^{T} B\right|_{F}\right)^{1 / l}>\left(3 \epsilon|A|_{F}|B|_{F}\right)^{1 / l}\right] a=\mathbb{P}\left[\mid A^{T} S^{T} S B-A^{T} B\right]_{F}>3 \epsilon|A|_{F}|B|_{F}\right]\right)$ to get

$$
\left.\mathbb{P}\left[\mid A^{T} S^{T} S B-A^{T} B\right]_{F}>3 \epsilon|A|_{F}|B|_{F}\right] \leq\left(\frac{1}{3 \epsilon|A|_{F}|B|_{F}}\right)^{l} E\left[\left|A^{T} S^{T} S B-A^{T} B\right|_{F}^{l} \leq \delta\right.
$$

1.2 Proof that CountSketch satisfies the JL property

So, we have shown that if CountSketch satisfies the JL-moment property, then it is an approximate matrix product. So, now we just need to show that it satisfies the JL-moment property. Luckily, we have the following theorem:

Theorem 2. The distribution D over CountSketch matrices satisfies the (ε, δ, l)-JL moment property for $l=2$

This will just involve doing an elementary second moment argument with no super deep math facts. We'll show it for $l=2$ since that is the smallest that worked above (because we needed triangle inequality of the $\frac{l}{2}$ norm above so we needed $\frac{l}{2} \geq 1$).

We'll require some basic hashing definitions for this proof
Definition. A hash function $h:[n] \rightarrow[m]$ is k-wise independent if $\forall i_{1} \neq i_{2} \neq \cdots \neq i_{k}, \forall j_{1}, j_{2}, \cdots j_{k} \in[m]$ we have $\mathbb{P}\left[h\left(i_{1}\right)=j_{1} \wedge h\left(i_{2}\right)=j_{2} \wedge \cdots h\left(i_{k}\right)=j_{k}\right]=\frac{1}{m^{k}}$ (ie., the elements independent and uniform over the output)

Also, k-wise independence gives us the following neat (but irrelevant for the sake of our proof) fact:
Fact 1. 2 and 4 -wise independent hash function can be stored with $O(\lg n)$ bits.
Proof of theorem 2. Consider $E_{S}\left[|S x|_{2}^{2}\right]$. For a CountSketch matrix S, let $h:\{1,2, \cdots, n\} \rightarrow\{1,2, \cdots, k\}$ define the location of the non-zero entry on the column, and let $\sigma:\{1,2, \cdots, n\} \rightarrow\{1,-1\}$ give the sign of
the non-zero entry in column i (so S is parameterized exactly by h and σ).

We only need h to be a 2 -wise independent hash function and $\sigma:[n] \rightarrow\{-1,1\}$ to be 4 -wise independent (and h and σ independent of each other). This means that we can store S with only $O(\lg n)$ bits.

Notation: Let $\delta(E)$ be the indicator for event E.

Note that $E\left[|S x|_{2}^{2}\right]=\sum_{j \in[k]} E\left[\left(\sum_{i \in[n]} \delta(h(i)=j) \sigma_{i} x_{i}\right)^{2}\right]$, by applying linearity of expectation and noting that the (i, j) element in the matrix only contributes to the i th entry in the vector when $\delta(h(i)=j)=1$, in which case it has value $\sigma_{i} x_{i}$. Then,

$$
\begin{aligned}
& E\left[|S x|_{2}^{2}\right] \\
& =\sum_{j \in[k]} E\left[\left(\sum_{i \in[n]} \delta(h(i)=j) \sigma_{i} x_{i}\right)^{2}\right] \\
& =\sum_{j \in[k]} \sum_{i_{1}, i_{2} \in[n]} E\left[\delta\left(h\left(i_{1}\right)=j\right) \delta\left(h\left(i_{2}\right)=j\right) \sigma_{i_{1}} \sigma_{i_{2}}\right] x_{i_{1}} x_{i_{2}}
\end{aligned}
$$

(Linearity of expectation again by expanding the square)
If $i_{1} \neq i_{2}$, then

$$
\begin{aligned}
& \sum_{j \in[k]} \sum_{i_{1}, i_{2} \in[n]} E\left[\sigma_{i_{1}}\right] E\left[\sigma_{i_{2}}\right] E\left[\delta\left(h\left(i_{1}\right)=j\right) \delta\left(h\left(i_{2}\right)=j\right)\right] x_{i_{1}} x_{i_{2}} \\
& =0
\end{aligned}
$$

So, we have

$$
\begin{array}{ll}
\sum_{j \in[k]} \sum_{i_{1}, i_{2} \in[n]} E\left[\delta\left(h\left(i_{1}\right)=j\right) \delta\left(h\left(i_{2}\right)=j\right) \sigma_{i_{1}} \sigma_{i_{2}}\right] x_{i_{1}} x_{i_{2}} \\
=\sum_{j \in[k]} \sum_{i \in[n]} E\left[\delta(h(i)=j)^{2}\right] x_{i}^{2} & \text { (Clear terms where } i_{1} \text { and } i_{2} \text { are not equal) } \\
=\frac{1}{k} \sum_{j \in[k]} \sum_{i \in[n]} x_{i}^{2} & \text { (Square of an indicator is itself an indicator) } \\
=|x|_{2}^{2} &
\end{array}
$$

Now, to prove that S satisfies the JL property for $l=2$, we also need to calculate $E\left[|S x|_{2}^{4}\right]$, because that term appears in the definition when we set $l=2$.

$$
\begin{aligned}
& E\left[|S x|_{2}^{4}\right] \\
& =E\left[\sum_{j \in[k]} \sum_{j^{\prime} \in[k]}\left(\sum_{i \in[n]} \delta(h(i)=j) \sigma_{i} x_{i}\right)^{2}\left(\delta\left(h\left(i^{\prime}\right)=j^{\prime}\right) \sigma_{i^{\prime}} x_{i^{\prime}}\right)^{2}\right] \\
& \left.=\sum_{j_{1}, j_{2}, i_{1}, i_{2}, j_{3}, i_{4}} E\left[\sigma_{i_{1}} \sigma i_{2} \sigma_{i_{3}} \sigma_{i_{4}} \delta\left(h\left(i_{1}\right)=j_{1}\right) \delta\left(i_{2}\right)=j_{1}\right) \delta\left(h\left(i_{3}\right)=j_{2}\right) \delta\left(h\left(i_{4}\right)=j_{2}\right)\right] x_{i_{1}} x_{i_{2}} x_{i_{3}}
\end{aligned}
$$

(i_{1}, i_{2} are from expanding the first squared norm, i_{3}, i_{4} from the second)
By 4 -wise independence of σ, the only non-zero terms is if $i_{1}=i_{2}=i_{3}=i_{4}$ or there are 2 pairs of equal values.

Case 1 If $i_{1}=i_{2}=i_{3}=i_{4}$ then necessarily $j_{1}=j_{2}$ (since each column has 1 non-zero entry), so it's $\sum_{j} \frac{1}{k} \sum_{i} x_{i}^{4}=|x|_{4}^{4}$.
Case 2 If $i_{1}=i_{2}$ and $i_{3}=i_{4}$ but $i_{1} \neq i_{3}$, then we can apply 2 -wise independence of h and get $\sum_{j_{1}, j_{2}, i_{1}, i_{3}, i_{1} \neq i_{3}} \frac{1}{k^{2}} x_{i_{1}}^{2} x_{i_{3}}^{2}=|x|_{2}^{4}-|x|_{4}^{4}$ (we subtract $|x|_{4}^{4}$ because $i_{1} \neq i_{3}$ so we don't get any terms that look like x_{i}^{4}).

Case 3 If $i_{1}=i_{3}$ and $i_{2}=i_{4}$ but $i_{1} \neq i_{2}$, then we need $j_{1}=j_{2}$ for it to not be 0 . Then, we get

$$
\sum_{j} \frac{1}{k^{2}} \sum_{i_{1}, i_{2}, i_{1} \neq i_{2}} x_{i_{1}}^{2} x_{i_{2}}^{2} \leq \sum_{j} \frac{1}{k^{2}} \sum_{i_{1}, i_{2}} x_{i_{1}}^{2} x_{i_{2}}^{2} \frac{1}{k}|x|_{2}^{4}
$$

Note this case is lower bounded by 0 .
Case 4 If $i_{1}=i_{4}$ and $i_{2}=i_{3}$, then it's the same as case 3 .
Putting this all together, we get $\left.E\left[|S x|_{2}^{4}\right] \in\left[|x|_{2}^{4},|x|_{2}^{(} 1+\frac{2}{k}\right)\right]=\left[1,1+\frac{2}{k}\right]$. The only inexactness came from cases 3 and 4 where we needed the upper bound.

So, setting $k=\frac{2}{\varepsilon^{2} \delta}$

$$
E_{S} \|\left. S x\right|_{2} ^{2}-\left.1\right|^{2}=E_{S}\left[|S x|_{2}^{4}\right]-2 E[S x]_{2}^{2}+1 \leq\left(1+\frac{2}{k}\right)-2+1=\frac{2}{k}=\varepsilon^{2} \delta
$$

which is exactly the JL property for $l=2$.

Recall that we needed $\mathbb{P}\left[\left|C S^{T} S D-C D\right|_{F}^{2} \leq(6 / \delta k) *|C|_{F}^{2}|D|_{F}^{2}\right] \geq-1 \delta$, just pattern match and recall $|C|_{F}^{2}=|D|_{F}^{2}=d$ since A is orthonormal, set $C=A^{T}, D=A$ and we have the desired result.

To get better failure probability bounds, you can look at higher moments.

