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1 Subsampled Randomized Hadamard Transform cont’d

Definition. Matrix Chernoff bound is such that if we have X1, ..., Xd be i.i.d copies of a symmetric
random matrix X ∈ Rd×d with E[X] = 0 and ∥X∥ ≤ γ and ∥E[XtX]∥ is bounded by σ2. Let
W = 1

s

∑
i∈[S] Xi for any ϵ > 0,

Pr[∥W∥ ≥ ϵ] ≤ 2d exp(− sϵ2

σ2 + γϵ/3)

.

Continuing our investigation of S = PHD.

• P the matrix can be considered as a sampling matrix that uniformly sampling s rows.
Specifically,

Pi,j =
√

n√
s

if row j is sampled and 0 otherwise.

• H is the Hadamard Matrix, where each entry

Hi,j = 1√
n

(−1)⟨i·j⟩

. i and j are binary vectors.

• D is the diagonal matrix with Di,i = ±1 with equal probability.

This Hadamard matrix H has interesting properties.

• Note: H is not a random matrix, and can be recursively defined as

H1 =
[
1
]

H2n =
[
Hn Hn

Hn −Hn

]

• H is orthonormal, i.e. HT H = I.
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Proof.

⟨H∗j , H∗k⟩ = 1
n

n∑
i=1

(−1)⟨i·j⟩(−1)⟨i·k⟩

= 1
n

n∑
i=1

(−1)⟨i·(j+k)⟩

=
{

1 if j = k

0 otherwise

■

• We can apply the matrix H to any vector
[
x1
x2

]
(x1, x2 ∈ Rn) in O(n log n) time.

Proof. We can apply the submatrix Hn to x1 and x2 recursively. Denoting the running time
of applying Hn to x1 and x2 as T (n). We can combine the results in O(n). we have

T (n) = 2T (n

2 ) + O(n)

∈ O(n log n)

■

• S = PHD can be applied to any vector in O(n log n) time. Since we only need O(n log n)
time to apply H to any vector, and P and D are diagonal matrices, we can apply them in
O(n) time. (Better yet we can apply P in O(s) time, since P is a sampling matrix.)

Remark 1. Note that HD is a rotation matrix and thus we have that |HDAx|2 = |Ax|2. (H,
D both orthonormal).

Theorem 1 (Azuma-Hoeffding Bound). Let X1, ..., Xd be independent random variables with
|Xi| ≤ ci and E[Xi] = 0. Let X = ∑d

i=1 Xi. Then for any ϵ > 0, we have

Pr [|X| > ϵ] ≤ 2 exp(− ϵ2

2 ∑
i c2

i

)

Lemma 1 (Flattening lemma). For any fixed vector y ∈ Rn and constant C, we have

Pr

|HDy|∞ ≥ C

√
log(nd/δ)

n

 ≤ δ

2d

Proof. We have the following observation: Let C be a constant, we apply the Azuma-Hoeffding
bound to the random variable HDyi.

■
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Let Yi be the ith sampled row of V = HDA. Let Xi = Id − n · Y T
i Yi, We first note that

E[Y T
i Yi] =

∑
i

Pr[Yi = vj ]vT
j vj

= 1
n

∑
i

vT
i vi

= 1
n

V T V

And since by the definition of Xi and that V is orthonormal, we have

E[Xi] = E[Id − n · Y T
i Yi] = Id − Id = 0d×d

Now we consider:

E[XT X + Id] = Id + Id − 2nE[Y T
i Yi] + n2E[Y T

i YiY
T

i Yi]
= 2Id − 2Id + n2 ∑

i

(1/n)vT
i viv

T
i vi

= n
∑

i

vT
i vi|vi|22

Now that we have derive the expectation, we wish to apply the flattening lemma here.
Define:

Z = n
∑

i

vT
i viC log(nd/δ) · (d/n) = C2d log(nd/δ) · Id

Note that the XT X + Id and Z are real and symmetric with non negative eigenvalues.

Claim 1. for all vectors y, we always have

yT E[XT X + Id]y ≤ yT Zy

Proof. Just consider that the expectation contains the dot product of vi and y, we then again apply
the flattening lemma to show that we have

yT Zy = d
∑

i

⟨vi, y⟩2C2 log(nd/δ)

. ■

Hence, we have a bound on the operator norm of expectation of the covariance matrix: ∥E[XT X]∥2 =
O(d log(nd/δ)). We can use the matrix chernoff bound now. We apply the matrix chernoff onto the
matrix Id − (PHDA)T (PHDA).

Pr[|Id − (PHDA)T (PHDA)|2 ≥ ϵ] ≤ 2d exp(− sϵ2

Θ(d log(nd/δ))).

We now set δ to be reasonable amount so that we have the probability less than δ/2.
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With the operator norm bounded, we can now show that we can construct a subspace embedding
now with this setup.

∀x unit vector,|xT (Id − (PHDA)T (PHDA))x| < ϵ

⇐⇒ |xT x − xT (PHDA)T (PHDA)x| < ϵ

⇐⇒ |I − |(SAx)|22| < ϵ

=⇒ |(SAx)|22 ∈ [1 − ϵ, 1 + ϵ]

Having shown that we have a subspace embedding, we apply the trick in the case of Guassian sketch
matrices S to come up with an answer to the original regression problem.

This technique gives an algorithm with running time

O(nd log n) + poly(d log n

ϵ
)

.

2 CountSketch Matrices & even faster subspace embeddings

We now make use of CountSketch matrices to achieve even faster subspace embeddings.

Definition (CountSketch Matrix). Matrix S is a k × n matrix with k = O(d2/ϵ2). Each column of
S has exactly one non-zero entry, which is either +1 or −1 with equal probability.

Remark 2. note that we can compute SA in nnz(A) time. Because in reality we can keep track of
a list of indices of those non-zero entries and then we can just index into A to get the the product.
The rest does not matter and ends up as zero anyway.

Now we show how we can construct a subspace embedding with CountSketch matrices. As usual,
we have A to be orthonormal. We wish to show that

|SAx|22 ∈ [1 − ϵ, 1 + ϵ]

. Suffices to show that
|AT ST SA − I|2 ≤ |AT ST SA − I|F ≤ ϵ

with high probability.

Lemma 2 (approximate matrix multiplication).

Pr

[
|CST SD − CD|2F ≤

( 6
number of rows of S

)
|C|2F |D|2F

]
≥ 1 − δ

Making use of the above lemma, we can show that if we conveniently let C = AT and D = A, we
have |A|2F = d and number of rows of S as 6d2/(δϵ2). Thus we have shown, again, S will give us a
subspace embedding.

We now shift attention to proving the above lemma.

4



Lemma 3 (JL property). A matrix S has the (ϵ, δ, ℓ)-JL moment property if for all unit x ∈ Rn,
we have

ES

∣∣∣|Sx|22 − 1
∣∣∣ℓ ≤ ϵℓ · δ
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