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1 Subsampled Randomized Hadamard Transform cont’d

Definition. Matrix Chernoff bound is such that if we have X1, ..., X4 be i.i.d copies of a symmetric
random matrix X € R4 with E[X] = 0 and || X|| < v and ||[E[X*X]|| is bounded by o?. Let
w=1 >icls) Xi for any € > 0,
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Continuing our investigation of S = PHD.

e P the matrix can be considered as a sampling matrix that uniformly sampling s rows.
Specifically,
vn

Pi’j:ﬁ

if row j is sampled and 0 otherwise.

e H is the Hadamard Matrix, where each entry

. ¢ and j are binary vectors.

e D is the diagonal matrix with D;; = £1 with equal probability.
This Hadamard matrix H has interesting properties.
e Note: H is not a random matrix, and can be recursively defined as
Hy = [1]

_ |Hn Hy

e H is orthonormal, i.e. H'H = 1I.



Proof.
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1 ifj=k
~ 10 otherwise

e We can apply the matrix H to any vector [ﬁll (x1,22 € R"™) in O(nlogn) time.
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Proof. We can apply the submatrix H,, to x1 and xs recursively. Denoting the running time
of applying H,, to 1 and z2 as T'(n). We can combine the results in O(n). we have

n
T(n) = 2T(§) + O(n)
€ O(nlogn)
[
o S = PHD can be applied to any vector in O(nlogn) time. Since we only need O(nlogn)

time to apply H to any vector, and P and D are diagonal matrices, we can apply them in
O(n) time. (Better yet we can apply P in O(s) time, since P is a sampling matrix.)

Remark 1. Note that HD is a rotation matrix and thus we have that |HDAz|y = |Az|s. (H,
D both orthonormal).

Theorem 1 (Azuma-Hoeffding Bound). Let Xi,..., Xy be independent random variables with
|Xi| < ¢ and E[X;]) =0. Let X = Y%, X;. Then for any € > 0, we have
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Lemma 1 (Flattening lemma). For any fized vector y € R™ and constant C, we have

Pri|X| > € < 2exp(— )

log(nd/d) <

5
Pr ||HDyly > C 2
r [ |HDyloo > - 5

Proof. We have the following observation: Let C' be a constant, we apply the Azuma-Hoeffding
bound to the random variable H Dy;.



Let Y; be the ith sampled row of V = HDA. Let X; =1;—n - YiTYi, We first note that

E[Y;TYZ] = Z PrlY; = vj]vavj
i
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And since by the definition of X; and that V' is orthonormal, we have
E[X;| = E[I;—n- YY) = I, — I; = 04
Now we consider:

EXTX 4+ 1j) = I+ I; — 2nE[Y;'Y;] + n?E[Y ;YY)
=21, — 21, + n? Z(l/n)v?vw?vi

T
= nZvlTvl]v,\%
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Now that we have derive the expectation, we wish to apply the flattening lemma here.
Define:
Z=n)_ vlv,Clog(nd/s) - (d/n) = C*dlog(nd/s) - I,

Note that the X7 X + I; and Z are real and symmetric with non negative eigenvalues.

Claim 1. for all vectors y, we always have

Y EIXTX + Ly <y"Zy

Proof. Just consider that the expectation contains the dot product of v; and y, we then again apply
the flattening lemma to show that we have

y"'Zy = d (v, y)*C*log(nd/s)
m

Hence, we have a bound on the operator norm of expectation of the covariance matrix: | E[XT X]||» =
O(dlog(nd/d)). We can use the matrix chernoff bound now. We apply the matrix chernoff onto the
matrix Iy — (PHDA)T(PHDA).

862

Pr[|I;— (PHDA)"(PHDA)|; > €] < 2d exp(—m

).

We now set § to be reasonable amount so that we have the probability less than §/2.



With the operator norm bounded, we can now show that we can construct a subspace embedding
now with this setup.

Yz unit vector,|z? (I — (PHDA)T(PHDA))z| < €
— |27z — 2T (PHDA)T(PHDA)z| < €
— |I—|(SAz)3| <€
— |(SAz)]3 €1 —€,1+¢
Having shown that we have a subspace embedding, we apply the trick in the case of Guassian sketch
matrices S to come up with an answer to the original regression problem.
This technique gives an algorithm with running time

dlogn

O(ndlogn) + poly( )

2 CountSketch Matrices & even faster subspace embeddings

We now make use of CountSketch matrices to achieve even faster subspace embeddings.

Definition (CountSketch Matrix). Matrix S is a k x n matrix with k = O(d?/€?). Each column of
S has exactly one non-zero entry, which is either +1 or —1 with equal probability.

Remark 2. note that we can compute SA in nnz(A) time. Because in reality we can keep track of
a list of indices of those non-zero entries and then we can just index into A to get the the product.
The rest does not matter and ends up as zero anyway.

Now we show how we can construct a subspace embedding with CountSketch matrices. As usual,
we have A to be orthonormal. We wish to show that

|SAz|3 € [1—€,1+ €

. Suffices to show that

|ATSTSA — Iy <|ATSTSA—1I|p <e
with high probability.
Lemma 2 (approximate matrix multiplication).

6
number of rows of S

Pr||CSTSD - CDJ3 < < ) yC|2F|D\;] >1-6

Making use of the above lemma, we can show that if we conveniently let C = AT and D = A, we
have |A|% = d and number of rows of S as 6d?/(5¢%). Thus we have shown, again, S will give us a
subspace embedding.

We now shift attention to proving the above lemma.



Lemma 3 (JL property). A matriz S has the (€,0,¢)-JL moment property if for all unit x € R",
we have

E5‘|S$\g— 1’€ <é.5
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