CS 15-851: Algorithms for Big Data	Spring 2024
Lecture $2-01 / 25 / 2024$	
Prof. David Woodruff	

1 Subsampled Randomized Hadamard Transform cont'd

Definition. Matrix Chernoff bound is such that if we have X_{1}, \ldots, X_{d} be i.i.d copies of a symmetric random matrix $X \in \mathbb{R}^{d \times d}$ with $\mathbb{E}[X]=0$ and $\|X\| \leq \gamma$ and $\left\|\mathbb{E}\left[X^{t} X\right]\right\|$ is bounded by σ^{2}. Let $W=\frac{1}{s} \sum_{i \in[S]} X_{i}$ for any $\epsilon>0$,

$$
\operatorname{Pr}[\|W\| \geq \epsilon] \leq 2 d \exp \left(-\frac{s \epsilon^{2}}{\sigma^{2}+\gamma \epsilon / 3}\right)
$$

Continuing our investigation of $S=P H D$.

- P the matrix can be considered as a sampling matrix that uniformly sampling s rows. Specifically,

$$
P_{i, j}=\frac{\sqrt{n}}{\sqrt{s}}
$$

if row j is sampled and 0 otherwise.

- H is the Hadamard Matrix, where each entry

$$
H_{i, j}=\frac{1}{\sqrt{n}}(-1)^{\langle i \cdot j\rangle}
$$

. i and j are binary vectors.

- D is the diagonal matrix with $D_{i, i}= \pm 1$ with equal probability.

This Hadamard matrix H has interesting properties.

- Note: H is not a random matrix, and can be recursively defined as

$$
\begin{gathered}
H_{1}=[1] \\
H_{2 n}=\left[\begin{array}{cc}
H_{n} & H_{n} \\
H_{n} & -H_{n}
\end{array}\right]
\end{gathered}
$$

- H is orthonormal, i.e. $H^{T} H=I$.

Proof.

$$
\begin{aligned}
\left\langle H_{* j}, H_{* k}\right\rangle & =\frac{1}{n} \sum_{i=1}^{n}(-1)^{\langle i \cdot j\rangle}(-1)^{\langle i \cdot k\rangle} \\
& =\frac{1}{n} \sum_{i=1}^{n}(-1)^{\langle i \cdot(j+k)\rangle} \\
& = \begin{cases}1 & \text { if } j=k \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

- We can apply the matrix H to any vector $\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]\left(x_{1}, x_{2} \in R^{n}\right)$ in $O(n \log n)$ time.

Proof. We can apply the submatrix H_{n} to x_{1} and x_{2} recursively. Denoting the running time of applying H_{n} to x_{1} and x_{2} as $T(n)$. We can combine the results in $O(n)$. we have

$$
\begin{aligned}
T(n) & =2 T\left(\frac{n}{2}\right)+O(n) \\
& \in O(n \log n)
\end{aligned}
$$

- $S=P H D$ can be applied to any vector in $O(n \log n)$ time. Since we only need $O(n \log n)$ time to apply H to any vector, and P and D are diagonal matrices, we can apply them in $O(n)$ time. (Better yet we can apply P in $O(s)$ time, since P is a sampling matrix.)

Remark 1. Note that $H D$ is a rotation matrix and thus we have that $|H D A x|_{2}=|A x|_{2}$. (H, D both orthonormal).

Theorem 1 (Azuma-Hoeffding Bound). Let X_{1}, \ldots, X_{d} be independent random variables with $\left|X_{i}\right| \leq c_{i}$ and $E\left[X_{i}\right]=0$. Let $X=\sum_{i=1}^{d} X_{i}$. Then for any $\epsilon>0$, we have

$$
\operatorname{Pr}[|X|>\epsilon] \leq 2 \exp \left(-\frac{\epsilon^{2}}{2 \sum_{i} c_{i}^{2}}\right)
$$

Lemma 1 (Flattening lemma). For any fixed vector $y \in \mathbb{R}^{n}$ and constant C, we have

$$
\operatorname{Pr}\left[|H D y|_{\infty} \geq C \sqrt{\frac{\log (n d / \delta)}{n}}\right] \leq \frac{\delta}{2 d}
$$

Proof. We have the following observation: Let C be a constant, we apply the Azuma-Hoeffding bound to the random variable $H D y_{i}$.

Let Y_{i} be the i th sampled row of $V=H D A$. Let $X_{i}=I_{d}-n \cdot Y_{i}^{T} Y_{i}$, We first note that

$$
\begin{aligned}
E\left[Y_{i}^{T} Y_{i}\right] & =\sum_{i} \operatorname{Pr}\left[Y_{i}=v_{j}\right] v_{j}^{T} v_{j} \\
& =\frac{1}{n} \sum_{i} v_{i}^{T} v_{i} \\
& =\frac{1}{n} V^{T} V
\end{aligned}
$$

And since by the definition of X_{i} and that V is orthonormal, we have

$$
E\left[X_{i}\right]=E\left[I_{d}-n \cdot Y_{i}^{T} Y_{i}\right]=I_{d}-I_{d}=0^{d \times d}
$$

Now we consider:

$$
\begin{aligned}
E\left[X^{T} X+I_{d}\right] & =I_{d}+I_{d}-2 n E\left[Y_{i}^{T} Y_{i}\right]+n^{2} E\left[Y_{i}^{T} Y_{i} Y_{i}^{T} Y_{i}\right] \\
& =2 I_{d}-2 I_{d}+n^{2} \sum_{i}(1 / n) v_{i}^{T} v_{i} v_{i}^{T} v_{i} \\
& =n \sum_{i} v_{i}^{T} v_{i}\left|v_{i}\right|_{2}^{2}
\end{aligned}
$$

Now that we have derive the expectation, we wish to apply the flattening lemma here. Define:

$$
Z=n \sum_{i} v_{i}^{T} v_{i} C \log (n d / \delta) \cdot(d / n)=C^{2} d \log (n d / \delta) \cdot I_{d}
$$

Note that the $X^{T} X+I_{d}$ and Z are real and symmetric with non negative eigenvalues.
Claim 1. for all vectors y, we always have

$$
y^{T} E\left[X^{T} X+I_{d}\right] y \leq y^{T} Z y
$$

Proof. Just consider that the expectation contains the dot product of v_{i} and y, we then again apply the flattening lemma to show that we have

$$
y^{T} Z y=d \sum_{i}\left\langle v_{i}, y\right\rangle^{2} C^{2} \log (n d / \delta)
$$

Hence, we have a bound on the operator norm of expectation of the covariance matrix: $\left\|E\left[X^{T} X\right]\right\|_{2}=$ $O(d \log (n d / \delta))$. We can use the matrix chernoff bound now. We apply the matrix chernoff onto the matrix $I_{d}-(P H D A)^{T}(P H D A)$.

$$
\operatorname{Pr}\left[\left|I_{d}-(P H D A)^{T}(P H D A)\right|_{2} \geq \epsilon\right] \leq 2 d \exp \left(-\frac{s \epsilon^{2}}{\Theta(d \log (n d / \delta))}\right)
$$

We now set δ to be reasonable amount so that we have the probability less than $\delta / 2$.

With the operator norm bounded, we can now show that we can construct a subspace embedding now with this setup.

$$
\begin{aligned}
& \forall x \text { unit vector, }\left|x^{T}\left(I_{d}-(P H D A)^{T}(P H D A)\right) x\right|<\epsilon \\
& \Longleftrightarrow\left|x^{T} x-x^{T}(P H D A)^{T}(P H D A) x\right|<\epsilon \\
& \Longleftrightarrow\left|I-|(S A x)|_{2}^{2}\right|<\epsilon \\
& \Longleftrightarrow|(S A x)|_{2}^{2} \in[1-\epsilon, 1+\epsilon]
\end{aligned}
$$

Having shown that we have a subspace embedding, we apply the trick in the case of Guassian sketch matrices S to come up with an answer to the original regression problem.

This technique gives an algorithm with running time

$$
O(n d \log n)+\operatorname{poly}\left(\frac{d \log n}{\epsilon}\right)
$$

2 CountSketch Matrices \& even faster subspace embeddings

We now make use of CountSketch matrices to achieve even faster subspace embeddings.
Definition (CountSketch Matrix). Matrix S is a $k \times n$ matrix with $k=O\left(d^{2} / \epsilon^{2}\right)$. Each column of S has exactly one non-zero entry, which is either +1 or -1 with equal probability.

Remark 2. note that we can compute $S A$ in $n n z(A)$ time. Because in reality we can keep track of a list of indices of those non-zero entries and then we can just index into A to get the the product. The rest does not matter and ends up as zero anyway.

Now we show how we can construct a subspace embedding with CountSketch matrices. As usual, we have A to be orthonormal. We wish to show that

$$
|S A x|_{2}^{2} \in[1-\epsilon, 1+\epsilon]
$$

. Suffices to show that

$$
\left|A^{T} S^{T} S A-I\right|_{2} \leq\left|A^{T} S^{T} S A-I\right|_{F} \leq \epsilon
$$

with high probability.
Lemma 2 (approximate matrix multiplication).

$$
\operatorname{Pr}\left[\left|C S^{T} S D-C D\right|_{F}^{2} \leq\left(\frac{6}{\text { number of rows of } S}\right)|C|_{F}^{2}|D|_{F}^{2}\right] \geq 1-\delta
$$

Making use of the above lemma, we can show that if we conveniently let $C=A^{T}$ and $D=A$, we have $|A|_{F}^{2}=d$ and number of rows of S as $6 d^{2} /\left(\delta \epsilon^{2}\right)$. Thus we have shown, again, S will give us a subspace embedding.

We now shift attention to proving the above lemma.

Lemma 3 (JL property). A matrix S has the (ϵ, δ, ℓ)-JL moment property if for all unit $x \in R^{n}$, we have

$$
\left.E_{S}| | S x\right|_{2} ^{2}-\left.1\right|^{\ell} \leq \epsilon^{\ell} \cdot \delta
$$

