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1 Computation Paths

Streaming algorithms can be made robust by making failure probability low enough, namely:

𝛿′ = 𝛿 · 𝑛−𝑂(𝜆𝜀(𝑓))

1. Only need to change output 𝜆𝜀(𝑓) times

2. Stream is poly(𝑛)-length and output is 𝑂(log 𝑛) bits so 𝑛𝑂(𝜆𝜀(𝑓)) computation paths between
algorithm and adversary

3. Union bound over all of them!

Should think of the adversarially created stream as a tree of depth 𝜆𝜀(𝑓) and branching factor
poly(𝑛), which gives 𝑛𝑂(𝜆𝜀(𝑓)) computation paths. This is because the adversary may choose 𝜆𝜀(𝑓)
many points among poly(𝑛) choices of value and index at which to adjust stream.

2 Polynomially Bounded Adversaries

Our non-robust 𝐹0-estimation algorithm was:

• Pick a hash function ℎ : [𝑛] → [𝑚] where 𝑚 = 𝑂(𝑛2) (Birthday Paradox)

• Maintain smallest 𝑡 = 100
𝜀2 values ℎ(𝑖) from stream

Note that the state of the algorithm doesn’t change if you insert the same item twice, so breaking it
requires breaking the hash function. This motivates using a cryptographic assumption on our hash
function:

Assumption: For any 𝑐 > 0 there is a 𝑑 > 0 and a family of 𝑛𝑑 hash functions that can be evaluated
in 𝑂(log 𝑛) memory such that any 𝑛𝑐-time Adversary cannot break this.

An example would be exponentially secure pseudorandom functions (AES or SHA256). This makes
the algorithm robust against polynomially bounded adversaries.
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3 Advanced Robust Algorithms

3.1 Differential Privacy

The general methods we have been using achieve a space complexity proportional to 𝜆𝜀(𝑓) ·
(space of non-robust sketch). Using differential privacy techniques [Hassidim, Kaplan, Mansour,
Matias, Stemmer] we can improve the dependence to

√︀
𝜆𝜀(𝑓)

High-level idea is to compute the sketches 𝑆1𝑥, ..., 𝑆
√

𝜆𝜀(𝑓)𝑥 and take the median of the values 𝑅.
This doesn’t quite work, instead we want a “private median” which is roughly a random element
in the middle quantile. This is useful for say, ℓ2-norm with insertion and deletion, where the flip
number is in the worst case Θ(𝑛) allowing us to achieve 𝑂

(︁√
𝑛 · log 𝑛

𝜀

)︁
. ℓ − 2 with insertion and

deletion is still wide open more outside of this more or less.

3.2 Difference Estimators

Instead of introducing a new sketch after every flip, which is necessary if the data changes greatly,
if the difference is small, our estimator does not have to be (1 ± 𝜀) but can be a constant factor.
For instance let’s say our previous value is 𝑓(𝑥1) = 10 and our updated value is 𝑓(𝑥2) = 10 + 7𝜀.
We can reuse our estimate for 𝑓(𝑥1) and give a rough estimate of the difference 𝑓(𝑥2) − 𝑓(𝑥1) to
get an estimate of 𝑓(𝑥2).

In the ℓ2-norm case this might look like estimating |𝑥2|22 − |𝑥1|22 to 𝑂(𝜀)|𝑥1|22.

𝑂(𝜀)|𝑥1|22 = 𝑂(𝜀)𝑓(𝑥1)
= |𝑥2|22 − |𝑥1|22
= |𝑥1 − 𝑥2|22 + 2⟨𝑥1, 𝑥1 − 𝑥2⟩

Both quantities just need to be sketched to a constant factor. The first can be done with a CountS-
ketch with just 𝑂(1/𝜀) rows. The dot product can be approximated with an approximate matrix
product using a 𝑂

(︁
log 𝑛

𝜀

)︁
space sketch. This is 𝑂

(︁
log 𝑛

𝜀

)︁
space in total which is an improvement to

resketching which would take 𝑂(log 𝑛/𝜀2).

We could sequentially sketch all the differences but overall the error would snowball. Instead we
will sketch differences in a binary tree. To estimate 𝑓(𝑥3) we could approximate 𝑓(𝑥2) − 𝑓(𝑥) and
𝑓(𝑥3) − 𝑓(𝑥2) and combine. The difference between 𝑓(𝑥3) and 𝑓(𝑥2) is a single 𝜀 factor, which is as
we saw above. In the 𝑓(𝑥2) − 𝑓(𝑥) case, we know the difference is a 2𝜀 factor apart, so we need to
estimate to 1

2 the relative error.

In general we will use specific intervals in a binary tree fashion. For the ℓ2-norm problem, on the
bottom level of the tree we use 𝑂

(︁
1
𝜀

)︁
sketches up to 𝑂

(︁
1
𝜀

)︁
accuracy and on the top we do 𝑂(log 𝑛)

flips and 𝑂
(︁

1
𝜀2

)︁
memory.
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