
CS 15-851: Algorithms for Big Data Spring 2024

Lecture 11 - 04/04
Prof. David Woodruff Scribe: Harrison Wiseblatt

1 Adversarially Robust Streaming Algorithms

Notation: in the classical streaming algorithms model updates to a large vector x ∈ Rn, at time
t = 1, 2, · · · , get update (it, ∆t) causing change xit = xit + ∆t.

Definition: If we restrict ∆t ≥ 0, the stream is insertion-only.

1.1 Constant probability of success at end of stream =⇒ can get constant
probability of success at all timesteps

If you have an algorithm that has constant probability of success at the end of a stream, you can
get one that’s correct throughout the stream, you can repeat it Θ(log n) times in parallel at all time
steps to get an algorithm that’s correct with constant probability at all time steps in the stream (by
ex., taking the median of the computed values).

1.2 F2 estimation

Goal: output F̃2 such that (1 − ε) · F2 ≤ F̃2 ≤ (1 + ε) · F2 with F2 =
∑

i x2
i .

We can use a random sketching matrix S ∈ {−ε, ε}
1

ε2 ×n with 4-wise independent entries. With
this, we have E[|S · x|22] = |x|22 and Var[|S · x|22] = O(ε2|x|42) to get a ε approximation with constant
probability.

1.3 F0 Estimation in insertion streams

F0 estimation: Goal: output F̃2 such that (1 − ε) · F0 ≤ F̃0 ≤ (1 + ε) · F0 with F0 = |{i : xi ̸= 0}|.
If we know that it’s just an insertion stream (ie., all entries we see are unique), we can choose a
hash function h : [n] → [M] with M = O(n2), with constant probability we get no collisions, we can
maintain the smallest t = 100

ε2 hash values in the stream.

Intuition: if you see F0 items, you expect that minimum hash value will be around roughly 1
F0

, since
there are no deletions you don’t have to worry about updates. Then, your estimate by only keeping
track of the min (call it X) is F̃0 = 1

X .

1

The intuitive approach doesn’t work to get a ε approximation because of variance issues, but if you
take 100

ε2 smallest items, if you instead take the t-th smallest hash value, you expect the smallest
hash value is around M

F0
, so v should be around tM

F0
.

One can use Chebyshev’s inequality to show that this will work with constant probability, and uses
O(log(n)

ε2) memory.

2 Tracking algorithms

These are the class of streaming algorithms where we care about the result across all time steps.
Let’s see what we can do without needing to do the process of repeating a "correct at the end"
algorithm Θ(log n) many times.

Let x(t) = stream vector after updates 1, 2, · · · , t.
Algorithm must output R(t) = (1 ± ε)f(x(t)) at all timesteps t, not just at the end.

This can lead way to adversaries being able to mess with your input if they can track the outputs
R(t) over time and change their inputs in response to them.

2.1 Motivation for adverserial streaming model

In classic streams, data is fixed before the algorithm starts (ie., future data does not depend on
R(t)). But, typically, your future data depends on your past decisions (ie., you may change your
inputs to the streaming algorithm when you look at its output), so the future data depends on the
current randomness. There are no known guarantees for problems in this case. This is because if
your query can depend on the state of the algorithm, in an algorithm with sketching you could (for
example) adverserially choose your input to be in the kernel of your sketching matrix. It’s bad if
your input can depend on your randomness.

2.2 Adversarial streaming model

An adversary can see R(t), then gets to choose (xti+1 , ∆ti+1). The goal of the adversary is to make
the algorithm fail to approximate a ε approximation, and (unless stated otherwise), the adversary
has unbounded computational power (with knowledge of the entire history of interactions). Note:
this is the black box model, where we assume the adversary doesn’t know the internal state of
the algorithm and can only observe its outputs.

Theorem (Alon, Matias, Szegedy ’96) the F2 sketching matrix given in Section 1.2 above is
not adversarially robust, even in insertion-only streams. Basically most non-deterministic sketches
from this class will fall under that trap.

2

3 Generic transformations

We can transform any streaming algorithm A into an adversarially robust algorithm A′: sketch
switching and computation paths.
Definition for a function f : Rn → R define the ε-flip number λε(f) to be the maximum number of
times f(x(t)) can change by a factor of (1 + ε) after poly(n) updates.

Ex., if you’re estimating F2 with ∆t = 1∀t, to estimate f(X) = |x|22, we have

λε ≤ log1+ε(poly(n)) = O(log n

ε
).

3.1 Sketch switching

Keep λε(f) many independent sketches, only use the output of one sketch Si at a time, answer R(t)
by the state of Si until it’s no longer a (1 + ε) approximation, then information about Si was leaked
so throw it away and start using the next one. This algorithm has the property that as soon as we
reveal any information of the algorithm, we make it irrelevant, since the adversary only sees one
output per sketch so can’t learn anything about its internals.

Formally:
1) Create O(λ ε

12
(f)) independent sketches S1, · · · , Sk, each providing a (1 ± ε

10 -approximation. Set
i = 1 and R(0) = 0.
2) At time t, if Estimate Si) ̸∈ (1± ε

3)R(t−1), set R(t) = Estimate (Si) and throw out Si, set i = i+1.
Otherwise, output R(t) = R(t−1), so we reveal no information about our algorithm (ie., we only out-
put the result of Si the first time we use it and never update it until it’s an insufficient approximation).

Intuition about correctness: we only need Si+1 to be a good approximation for the stream the
adversary generates to try to fool Si, but either Si will either be correct forever, or it will end, but
with constant probability Si+1 will be correct for whatever stream the adversary generates (since
it’s independent of Si+1).

Formal proof :

Proof. we can WLOG assume the adversary is deterministic. This is because if a randomized
adversary can break your thing with probability ≥ 2

3 , that 2
3 probability is over your randomness

and theirs, so by averaging there’s some fixed choice of their random coins that still will break your
thing with probability at least 2

3 .

This fixes the part of the stream the adversary gives Si after Si−1 returned an answer out (that
stream doesn’t depend on Si).
The stream doesn’t depend on Si (but it could depend on the previous sketches), so Si is correct at
all positions in the new stream.

3

Si outputs old value Out until Out’ ̸= (1 ± ε
3) · Out (so just fix what the adversary does if it saw

out forever).
It’s a concern that you learn something about Si until it outputs Out’, but Si is correct on whatever
fixed stream you choose until Si outputs Out’, so that doesn’t matter.

Finally, if Si is a (1 ± ε
10) approximation, then Out’ ̸= (1 ± ε

3) Out, then f has changed by a 1 ± ε
12

factor, so the number of sketches we need is bounded by λ ε
12

(f), and if f changes by a (1 ± ε) factor,
then Out’ ̸∈ (1 ± ε

3) Out, so we are always correct.
■

So, on F2 estimation, this will give we have O(log2 n
ε3) total memory used (because we have O(log n

ε)
many sketches, each of which uses O(log n

ε2) memory.

4

	Adversarially Robust Streaming Algorithms
	Constant probability of success at end of stream -3mu can get constant probability of success at all timesteps
	F2 estimation
	F0 Estimation in insertion streams

	Tracking algorithms
	Motivation for adverserial streaming model
	Adversarial streaming model

	Generic transformations
	Sketch switching

