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1 Projection on Complicated Objects and Gaussian Mean Width

In previous lectures, we’ve seen that least squares regression finds the closest point y in a subspace
K to a point b. Let us now consider a more general problem, where K is a possibly infinite set of
points, and we have a point b and we want to compute the following (all norms here are Euclidean
norms)

min
y∈K

||y − b||2

Similar to before, we can employ sketching. Let S be a sketching matrix, and we now want to
output

y′ = arg min
y∈K

||Sy − Sb||2

whereby the arg minimizer y′ in the sketch space also satisfies ||y′ − b||2 ≤ (1 + ε) minyk
|y − b|. More

generally, we want to preserve distances of all vectors in a set K, that is

∀y, y′ ∈ K|S(y − y′)| = (1 ± ε)|y − y′|

What properties of K determine the dimension and sparsity of S?

Let’s consider the following examples to gain a sense of this question. What dimension of S is
needed if K is:

• n arbitrary points in Rd If S is a matrix of i.i.d. Gaussians from the first lecture, we know that
we need O( log n

ε2 ) rows in order to preserve distances as required by the Johnson-Lindenstrauss
Lemma.

• n arbitrary points on a line in Rd Is S is a matrix of i.i.d. Gaussians, we only need O( d
ε2 ) rows

to preserve norms of all vectors in a d-dim subspace. Here d = 1 so we only need O(1/ε2)
rows.

1.1 Spherical Mean Width

The previous examples motivate the Spherical Mean Width. Let K be a bounded subset in Rn.
Definition (Width in direction u of a unit vector u). The width in direction u for a unit vector u
is defined as the following

width in direction u = sup
p,q∈K

< u, p − q >

You’re taking two parallel hyperplanes whose normal vector is u and you’re bringing them together
until they’re tangent with your set K.
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Definition (Spherical mean width). It’s the average over all unit vectors u on the sphere is defined
as

E
u

[
sup

p,q∈K
< u, p − q >

]

Intuitively, a bounded line has a large width only in one direction but on average it is very small.
However, for a ball, on average the width is the same.

Definition (Gaussian Mean Width). Let g ∼ N(0, In) be an i.i.d. Gaussian vector. Then the
Gaussian mean width is defined as

g(L) = E
g

[
sup

p,q∈K
< g, p − q >

]
= Θ(

√
n) · spherical mean width

Consider the following examples

• K = Sn−1 , the unit sphere, has g(K) = Θ(
√

n) because for any direction we consider, the
width is 2.

• K = set of unit vectors in a d−dimensional subspace of Rn has g(K) = Θ(
√

d) because we
can express the subspace as Ux where U ∈ Rn×d has orthonormal columns. Hence when
trying to calculate the Gaussian mean width, we’re considering Eg

[
supunit x,y < g, Ux − Uy >

]
.

But since U has orthonormal columns, we can recall from the first lecture that gU = h, a
d−dimensional vector of i.i.d. Gaussians, we can express < g, Ux − Uy >=< g, U(x − y) >≡<

h, x − y >, which gives us Eh

[
supx,y < h, x − y >

]
= Θ(

√
d) since we’ve just reduced it to the

previous problem and it’s like taking the gaussian mean width over a d−dimensional unit ball.

• K = t arbitrary unit vectors in Rn has g(K) = Θ(log0.5 n) as explained below.

1.2 Gaussian Mean Width of t arbitrary unit vectors

Let u1, u2, ..., ut be t arbitrary unit vectors in Rn. Let g ∈ Rn have i.i.d. N(0, 1) entries. Define
random variables Zj =< uj , g > which are N(0, 1) random variables. We want to bound the
quantity Eg[maxj Zj ]

Fact: for an N(0, 1) random variable W and some λ > 0, E[eλW ] = e
λ2
2

Firstly, we have that for any λ > 0,

E[eλ maxj Zj ] ≤
∑

j

E[eλZj ] ≤ te
λ2
2

The first inequality comes from the fact that quantity on the left only considers the max of Zj ,
whereas the right quantity considers the sum of all Zjs. The second inequality comes from the
above fact.

Secondly, for all λ > 0,

E
g

[
max

j
Zj

]
≤ ( 1

λ
logE[eλ maxj Zj ]) ≤ ( log t

λ
+ λ

2 ) ≤ 2
√

log t
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The first inequality comes from Jensen’s inequality and the concavity of log. The second inequality
uses what we calculated from the first point and taking log of it. Finally, by setting λ =

√
log t we

get the final inequality.

1.3 Sketching Bounds

Theorem 1 (Gordon’s Theorem). Let K be a subset of Sn−1. A random Gaussian sketching matrix

S with g(K)2

ε2 rows satisfies ∀y, y′ ∈ K, |S(y − y′)|2 = (1 ± ε)|y − y′|2

Essentially, the sketching dimension is determined by the Gaussian mean width. Tying this back to
previous lectures, for a d−dimensional subspace, since g(K) = Θ(

√
(d)), when we plug this back in

we get that S needs d/ε2 rows. For n arbitrary points, g(k) = Θ(
√

n), using Gordon’s Theorem
shows we need log n

ε2 rows which gives us the JL-Lemma. These are special cases of Gordon’s theorem.

What about sparse sketching matrices?
Theorem 2 (Bourgain, Dirksen, Nelson). S can have m = g(K)2poly(log n)/eps2 rows and
s = poly(log n)/eps2 non-zeros per column in m and s satisfy a condition related to higher moments
of supp,q < g, p − q >

2 Compressed Sensing

We are trying to estimate the vector x ∈ Rn by taking random "linear measurements". In the
context of this class, we choose a random r × n sketching matrix S and observe Sx. We want to
output a vector x′ such that

||x − x′||p = D · min
k−sparsez

||x − z||q

where D is the distortion, also known as the ℓp/ℓq-guarantee.

Let xk be the best k−sparse approximation to x. When x is a vector, it’s just the vector containing
the largest k coordinates in magnitude.

There are two schemes for estimating x′ ∈ Rn:

• Randomized "for-each" scheme

• Deterministic "for-all" scheme

CountSketch is a randomized scheme that achieves the ℓ2/ℓ2 guarantee with high probability:
||x − x′||2 = O(1)||x − xk||2(∗)

2.1 CountSketch for Compressed Sensing

When S is a CountSketch matrix, it is a random linear map with O(k log n) rows. However, we can
view it as O(log n) reptitions of hashing into O(k) buckets. From previous lectures, we’ve seen that
S estimates every coordinate xi of x up to an additive error of ||x − xk||2√

k
.
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If we output x′ as a 2k−sparse vector that consists of the top 2k estimates (with respect to
magnitude) given by CountSketch, we can satisfy (∗) with high property.

Proof that the above scheme satisfies (∗):

Definition (Coordinate i is heavy if).

|xi| ≥ |x − xk|2√
k

Note that there can be at most 2k heavy coordinates

Definition (Coordinate i is super-heavy if).

|xi| ≥ 3 ||x − xk||2√
k

We claim that the set T of super-heavy coordinates is in the support of x′

|x − x′|2 ≤ |(x − x′)T |2 + |(x − x′)[n]\T |2 (By the triangle inequality)

≤
√

|T | · |x − xk|2√
k

+ |(x − xk)T |2 + |(xk − x′)[n]\T |2

(The first time comes from the previous line. The 2nd and 3rd term come from the triangle inequality.)
= O(|x − xk|2) (As desired)

Clearly the first two terms are O(|x−xk|2). However, we can show that the last term |(xk−x′)[n]\T |2 ≤
√

3k maxi∈[n]\T (xk − x′)i < O( |x − xk√
k

). The 3k comes from the fact that xk has k non-zero entries,

x′ has 2k non-zero entries, therefore their difference has at most 3k non-zero entries. The final
inequality requires casing:

1. The difference is bounded by additive error if the index is in the support of both vectors

2. The difference is bounded by the heavy guarantee if the coordinate is in xk.

3. If the coordinate is in x′ then we need to show it is bounded by the quantity plus some additive
error.

2.2 No Deterministic Algorithm Achieves ℓ2/ℓ2

Let’s consider the case of k = 1. AFSOC that S is a deterministic sketching matrix with r = o(n)
rows. It sufficies to show that there exists a vector x in the kernel of S with |x|∞ ≥ C|x − x1|2 for
any constant C > 0.

The idea here is that we only see that Sx = 0. Since we need to satisfy multiplicative error, we
don’t know if 0 was the input or some other vector. So we need to output x′ = 0 and have that
|x − x′|2 = |x|2 is our error. We are in trouble if |x|2 > O(1)|x − x1|2 for k = 1.
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WLOG, we can assume that S has orthonormal rows. Since ∑
i ||Sei||22 = r we know there exists

an i with |Sei|22 ≤ r
n . Let x = ei − ST Sei which means that x is in the kernel of S since

Sx = Sei − (SST )Sei = 0. Note here that ST S is the projection matrix.

But since
|x|2∞ ≥ |xi|2 = (et

iei − eT
i ST Sei)2 ≥ (1 − r

n
)2

While simultaneously we have that

|x − x1|2 ≤ |x − ei|2 = |ST Sei|2 = |Sei|2 ≤
√

r

n
= o(1)
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