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1 Aspects of 1-Way Communication of INDEX

Given:

• Alice has x ∈ {0, 1}n

• Bob has i ∈ [n]

• Alice sends a randomized message M to Bob

•

I(M ; X|R) =
∑

i

I(M ; Xi | X<i, R) (1)

≥
∑

i

I(M ; Xi | R) (expand summand (∗))

= n −
∑

i

H(Xi | M, R) (2)

From Fano’s inequality, we know H(Xi | M, R) ≤ H(δ). If Bob can guess Xi with probability, then

CCδ(INDEX) ≥ I(M ; X | R) ≥ n(1 − H(δ))

1.1 Dealing With Partial Correctness Guarantees

If we have the following correctness guarantee, for example, over uniformly random X, i for every
input pair, we can we can average over input pairs and still have that guarantee:

P [Bob outputs Xi] ≥ 9
10

The same lower bound applies even if the protocol is only correct on average over x and i drawn
independently from a uniform distribution. How does the proof change? Instead of Fano’s holding
for all i, it should hold for a large fraction of i, or a typical i. Say, for 4/5ths of the i, the failure
probability should be at most 2δ. The intuition is that we have a small failure probability for a
large fractions of the is. Apply this proof to those is for which we have the correctness guarantee.
The key point is that for Ω(n) different i, we can still apply the bound.
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1.2 Removing Randomness

Note that wlog, we can have have the players act deterministically, by viewing the randomized
algorithm as a distribution over deterministic algorithms, i.e. there must be some fixing of the
randomness that achieves the guarantee. Fixing the randomness, you can prove lower bounds for the
deterministic protocol, then argue that the same lower bounds hold once you introduce randomness.

2 Distributional Communication Complexity

• (X, y) ∼ µ

• µ-distributional complexity Dµ(f): the minimum communication cost of a protocol which
outputs f(X, Y ) wp. ≥ 2/3 for (X, Y ) ∼ µ

• Yao’s Minimax principle: R(f) = maxµ Dµ(f)

Theorem 1 ([KNR99]). Indexing is Universal for Product Distribution.

• Communication matrix Af of a boolean function f : X × Y → {0, 1} has (x, y)-th entry equal
to f(x, y). Alice has X, Bob has Y . Rows correspond to inputs X, col. to inputs Y in the
joint (communication) matrix

•
max

product µ
Dµ(f) = θ(V C dimension of Af )

• Product µ means ∃µ1, µ2 such that µ(x, y) = µ1(x)µ2(y). V C dimension means "richness".
f(x, y) ∈ {0, 1}. V C dimension d means I can choose 2d columns where all row block patterns
are represented to "see the whole hypercube". Embed the INDEX problem on that hypercube.

• In INDEX: In a 2n by n matrix where every single n pattern occurs, V C-dim is n in that
case. Now, we have a 2d × d communication matrix. Embed product (uniform for x, i) dist.
into the communication matrix, and the Theorem says that gives you the optimal lower
bound you can get for product distributions.

3 Indexing with Low Error

• Index problem with 1/3 error probability and 0 error probability both have Ω(n) communication

• Sometimes want lower bounds in terms of error probability

3.1 Indexing on Large Alphabets

• Alice has x ∈ {0, 1}n/δ with wt(x) = n, Bob has i ∈ [n/δ]

• Bob wants to decide if xi = 1 with error probability δ
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• 1-Way communication is Ω(n log(1
δ )) [JW21]

• Better encoding of x: n nonzero locations,
(n/δ

n

)
possibilities. log2

(n/δ
n

)
≤ log2(e/δ)n ≤

O(n log 1
δ ). This is optimal by [Jayram, W]

• This can be used to get a Ω(log(1
δ )) bound for norm estimation. Recall: l2 estimation:

streaming space complexity with x ∈ poly(n), want 1 ± ϵ approx, want to succeed wp. ≥ 1 − δ
with space complexity (Sx where S is CountSketch) 1

ϵ2 log n log 1
δ . The log factor comes from

AUGMENTED INDEX, the 1
ϵ2 from Gap-Hamming, and the last part from Indexing

With Large Alphabets. The upper bound is their product, the lower bound is their sum.

4 Beyond Product Distributions

4.1 Non-Product Dists.

• needed for stronger lower bounds on norm estimation, especially for p > 2

• estimating | · |∞ up to a multiplicative factor of B in a stream.

4.2 Gap-∞ Problem

• Alice has x ∈ {0, ..., B}n

• Bob has y ∈ {0, ..., B}n

• Promise: |x − y|∞ ≤ 1 or |x − y|∞ ≥ B

• Lowerbound: Ω(n/B2) [SS02, BJKS04]

4.3 Example

Bob has an index, y = −ei. If we solve Gap-∞ for B = 2, can solve INDEX. x − y = x + ei: if
xi = 1: |x − y|∞ = 2. Else, its 1. To get context for the lower bound, let’s think of some possible
upper bounds to this problem. lp-norm estimation is n1−2/ppoly(log n) based on an Exponential
rvs-based algorithm from a previous lecture. This allows you to estimate |x|p (as well as |x|pp)up to
a constant factor. If you output Z s.t. |x|p ≤ Z ≤ C|x|p, then |x|pp ≤ Zp ≤ Cp|x|pp, where C, p are
constant.

Case 1: |x − y|∞ ≤ 1 then |x|pp ≤ n

Case 2: |x − y|∞ ≥ B then |x|p ≥ Bp, i.e we have separation.

Can distinguish between them if Bp > 10 · n. Suppose B = (10n)1/p. Estimate the p norm to the p
of x−y. In one case its at most 10n, in the other case at most n. The complexity of a p-norm algo is
the runtime for the Gap-∞ problem. Send the streaming algorithm. n1−2/p is also O( n

B2 )poly(log n).
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Alice computes Sx and sends it to Bob, who computes Sy, to have S(x − y). When B > 10
√

n, use
p = 2. when p gets very close to 1 you can’t do any better than Ω(n) anyways, so in this case you
can send the whole vector.
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