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1 One-Way Communication Complexity For The Indexing Problem

In this section, we look at the one-way communication complexity for the Index problem. We
examine the scenario where Alice possesses a binary string x ∈ {0, 1}n and is tasked with sending
a singular message M to Bob. Given M and an index j ∈ [n], Bob’s objective is to accurately
determine the value of xj with a success probability of at least 2

3 . We note that this probability
threshold is determined by the randomness of the process, applicable universally across all strings x
and indices j, expressed as ∀x, ∀j, Prrandomness [Bob correctly identifies xj ] ≥ 2

3 .

Our goal is to establish that the minimum amount of information that must be exchanged to
address this problem effectively is Ω(n) bits. In our analysis, we use a uniform distribution µ
over the set of strings X ∈ {0, 1}n, and compare Bob’s prediction X ′

j against the actual value Xj ,
acknowledging that the probability of correctness Pr

[
X ′

j = Xj

]
≥ 2

3 . This scenario prompts us to
question the information about Xj that can be inferred from M . Leveraging Fano’s inequality, given
the independence of Xj and X ′

j conditioned on M as illustrated by the Markov chain X → M → X ′,
we derive:

H(Xj | M) ≤ H(Pe) + Pe log2(|X| − 1) Application of Fano’s Inequality

≤ H

(1
3

)
+ 1

3 log2(2 − 1) Binary case, |X| = 2, Pe = 1
3

< 1, (1)

indicating that the message M indeed reveals some information about X. Further, exploring the
mutual information I(M ; X), with M as a variable dependent on X, and X uniformly distributed,
we apply the chain rule to obtain a lower bound. Denoting X<i as the sequence of bits preceding
the i-th bit, and considering X as a binary sequence, we find:

I(X; M) =
∑

i

I(Xi; M | X<i) Independence of bits in the sequence

= n −
∑

i

H(Xi | M, X<i) Definition of Mutual Information

≥ n −
∑

i

H(Xi | M) H(Xi | M, X<i) ≤ H(Xi | M)

≥ n − nH

(1
3

)
,

= Ω(n), By Fano’s Inequality (1) (2)

thus establishing the mutual information as at least Ω(n) bits. Relating this to the communication
complexity represented by |M | = ℓ bits, which delineates 2ℓ potential states, and recognizing
H(M) ≤ log2(2ℓ) = ℓ, we deduce |M | ≥ H(M) ≥ I(X; M) = Ω(n) , proving that the size of Alice’s
message must span at least Ω(n) bits.
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2 Typical Communication Reduction

In our efforts to establish lower bounds for computational problems, it’s a common strategy to
reduce the problem in question to another problem like the Index problem to compute a lower
bound. Below is a visual framework depicting this reduction process.

Alice Bob

a ∈ {0, 1}n b ∈ {0, 1}n

Stream s(a) Stream s(b)

Run Alg(s(a)) Compute
Alg(s(a), s(b))

Transmit state

Following this process:

1. Alice runs a streaming algorithm on s(a), then transmits the state of Alg(s(a)) to Bob.

2. Bob computes Alg(s(a), s(b)).

3. If Bob successfully solves g(a, b), it implies that the space complexity of Alg is at least the
one-way communication complexity of g.

3 Case Study: Identifying Distinct Elements

We are interested in calculating the total count of distinct elements within a series a1, a2, . . . , am ∈ [n].
The aim is to illustrate that the minimum required communication complexity for solving this
challenge effectively is Ω(n) bits, establishing a foundational lower bound.

We approach this by reducing the current problem of enumerating distinct elements to the Index
problem that we are familiar with. Briefly revisiting the Index problem, it involves Alice holding a
binary sequence x ∈ {0, 1}n, and Bob having an index i ∈ [n], with the objective for Bob being to
determine the truth value of xi = 1.

The methodology for the reduction is described as follows: Let s(a) represent the sequence
i1, i2, . . . , ir, including each ij when xij = 1. We define s(b) = i, and analyze what happens
for each of xi:

xi =
{

0 if Alg(s(a), s(b)) = Alg(s(a)) + 1
1 otherwise
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In instances where Alg(s(a), s(b)) = Alg(s(a)) + 1, this indicates that the inclusion of s(b) with the
stream introduces an extra unique element. If xi = 1, suggesting i is included in s(a), then the
inclusion of s(b) signifies that i is no longer recognized as a new distinct element. On the other
hand, if xi = 0, the count of unique elements is incremented by one.

This reduction process implies that the space complexity for Alg is necessarily at least equivalent to
the one-way communication complexity of the Index problem.

4 Strengthening Index: Augmented Indexing Approach

In this enhancement of the Index problem, we augment the information available to Bob by providing
him access to the sequence of bits up to xi−1. Bob’s objective remains unchanged; he aims to
ascertain the value of xi based on the information relayed by Alice.

Participant Alice Bob
Information x ∈ {0, 1}n i ∈ [n] and x1 . . . xi−1

Stream s(a) s(b)

We assert that this modified problem still adheres to a lower bound of Ω(n), following a reasoning
akin to the original Index problem. The proof uses the mutual information concept, presented as
follows:

I(X; M) =
∑

i

I(Xi; M |X<i) Chain rule

=
∑

i

(
H(Xi|X<i) − H(Xi|M, X<i)

)
Definition of Mutual Information

= n −
∑

i

H(Xi|M, X<i) Independence of Xi and X<i and uniform Xi

For this analysis, we leverage the Markov Chain X → X<i, M → X ′
i in conjunction with Fano’s

Inequality, leading to H(Xi|M) ≤ H(δ) + δ log2(2 − 1) = H(δ). Continuing with the proof of the
lower bound:

I(X; M) ≥ n − H(δ)n
≥ n(1 − H(δ))

Consequently, this approach enables us to establish a general lower bound on the communication
complexity (CC) for the Augmented Index problem:

CCδ(Augmented Index) ≥ I(M ; X) ≥ n(1 − H(δ))

5 Establishing a log(n) Bit Lower Bound for Norm Estimation

In this example, we explore the case where Alice’s input to the Augmented Index problem is
restricted to log(n) bits, to define a lower bound for norm estimation tasks. A fundamental
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problem in streaming algorithms involves managing a counter through a sequence of increments and
decrements. The pivotal question we examine is whether it’s feasible to estimate this counter within
a factor of 2. Although directly reporting such an approximation requires only log(log(n)) bits
storage, we demonstrate that the actual communication complexity of approximation transcends
the mere space to store the counter.

Alice initiates this process by constructing a vector v, which contains a single non-zero coordinate
represented by

∑log(n)
i 10jxj . This setup implies that estimating the norm of vector v = (c, 0, 0, . . . , 0)

is synonymous with approximating the value of c across any p-norm ∥v∥2, ∥v∥1, . . . , ∥v∥p. Following
this, Alice transmits to Bob the algorithm’s state after incorporating vector v into the data stream.

Bob, holding an index i ∈ [log(n)] along with subsequent bits xi+1, xi+2, . . . , xlog(n), constructs the
vector w =

∑
j>i 10j . The algorithm’s output after adjusting vector v by vector w, Alg(v − w) =

Alg
(∑

j≤i 10jxj

)
, can be used to determine the value of xi:

xi =
{

1 if Alg(v − w) ≥ 10i

2
0 otherwise

For instances where xi = 0, the algorithm’s output, Alg(v − w), is constrained by the sum
1+10+100+ . . .+10i−1, which is less than 2

9 ·10i. Conversely, if xi = 1, then Alg(v −w) ≥ 10i

2 . This
separation establishes a gap between the bounds, even in the factor of 2-approximation framework.
Thus the norm approximation problem can be reduced to the index problem and estimating norms
requires a lower bound of log(n) bits.

6 1
ε2 Bit Lower Bound for Norm Estimation

In this analysis, we aim to demonstrate a 1
ε2 bit lower bound for norm estimation by connecting the

Index problem with the Gap Hamming Distance problem, following the methodology outlined in
(1). The Gap Hamming Distance problem is equivalent to the norm estimation problem for binary
streams.

- Hamming Distance ∆(x, y): Counts the number of positions i at which the corresponding
symbols xi and yi differ.

- Gap Hamming Problem: Given two strings of length n, we’re assured that either ∆(x, y) >
n
2 + 2εn or ∆(x, y) < n

2 + εn. The objective is to ascertain which condition holds.

- Public Coin: Denotes a series of bit vectors r1, . . . , rt, or equivalently, a t × t matrix of random
bits where row i is represented by ri.

Alice is provided a bitstream x of length t = O
(

1
ε2

)
, denoted a = {0, 1}t. Bob receives an index i

with b = {0, 1}t. Using the public coin, a and b are defined as as follows:

ak = Majorityj where xj=1rk
j ,

bk = rk
i .

Here, b simply uses the i-th column from the public coin matrix, whereas a aggregates columns for
which xj = 1, and then determines the majority bit for each row. If xi = 0, a and b remain unrelated
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due to the exclusion of the i-th column in a’s construction, leading to an expected Hamming distance
E[∆(a, b)] = t

2 . This is because each bit matches with a 1
2 probability. Conversely, if xi = 1, a and

b become dependent. Examining the likelihood for a bit (1 or 0) to represent the majority, and
considering the weight of a vector as its count of 1s, let k denote the weight of x. The probability
that the majority bit is equal to the first bit can be written after approximating the sum of binomial
coefficients as,

Pr [majority of Z1, . . . , Zk = Z1] ≈ 1
2 + Θ

( 1√
k

)
≈ 1

2 + Θ
( 1√

t

)
≈ 1

2 + Θ(ε).

This leads us to an adjusted expected Hamming distance:

E[∆(a, b)] = t

2 − Θ(εt)

= t

2 − Θ
(1

ε

)
.

In terms of xi’s value, this can be written as:

E[∆(a, b)] = t

2 − xi

√
t.

The gap across the two scenarios varies by a factor of (1+ε) meaning that we can use Gap Hamming
Algorithm to resolve Indexing. As t is set to Θ

(
1
ε2

)
, this derivation implies a 1

ε2 bit lower bound
for the Gap Hamming problem and therefore the norm estimation problem.
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