CS 15-851: Algorithms for Big Data	Spring 2024
Lecture $8-3 / 14 / 2024$	
Prof. David Woodruff	

The first half of this lecture covers the core concepts of information theory, the study of the quantification, storage, and communication of information.

1 Information Theory Definitions

First, we provide the definitions of several core concepts in information theory, along with some notable facts claims regarding these concepts.

1.1 Discrete Distributions

p is a discrete distribution over a finite support of size n if:

- $p=\left(p_{1}, p_{2}, \ldots, p_{n}\right)$
- $p_{i} \in[0,1]$ for all $i \in[n]$
- $\sum_{i} p_{i}=1$
X is a random variable with distribution p if $\operatorname{Pr}[X=i]=p_{i}$.

1.2 Entropy

Definition (Entropy). $H(X)=\sum_{i} p_{i} \log _{2}\left(\frac{1}{p_{i}}\right)$
Intuitively, entropy $H(X)$ is a measurement of the uncertainty of X. It has the following characteristics:

- If $p_{i}=0$, then $p_{i} \log _{2}\left(\frac{1}{p_{i}}\right)=0$.
- $H(X) \leq \log _{2} n$. Equality holds when $p_{i}=\frac{1}{n}$ for all i.
- If B is a bit with bias p, then

$$
H(B)=p \log _{2} \frac{1}{p}+(1-p) \log _{2} \frac{1}{1-p}
$$

1.3 Conditional and Joint Entropy

Definition (Conditional Entropy). $H(X \mid Y)=\sum_{y} H(X \mid Y=y) \operatorname{Pr}[Y=y]$
Definition (Joint Entropy). $H(X, Y)=\sum_{x, y} \operatorname{Pr}[(X, Y)=(x, y)] \log \left(\frac{1}{\operatorname{Pr}[(X, Y)=(x, y)]}\right)$

Claim 1 (Chain Rule). $H(X, Y)=H(X)+H(Y \mid X)$
Proof.

$$
\begin{array}{rlr}
H(X, Y) & =\sum_{x, y} \operatorname{Pr}[(X, Y)=(x, y)] \log \left(\frac{1}{\operatorname{Pr}[(X, Y)=(x, y)]}\right) \\
& =\sum_{x, y} \operatorname{Pr}[X=x] \operatorname{Pr}[Y=y \mid X=x] \log \left(\frac{1}{\operatorname{Pr}[X=x] \operatorname{Pr}[Y=y \mid X=x]}\right) \\
& \text { (By definition) } \\
& =\sum_{x, y} \operatorname{Pr}[X=x] \operatorname{Pr}[Y=y \mid X=x]\left(\log \left(\frac{1}{\operatorname{Pr}[X=x]}\right)+\log \left(\frac{1}{\operatorname{Pr}[Y=y \mid X=x]}\right)\right) \\
& =H(X)+H(Y \mid X) & \text { (By definition) }
\end{array}
$$

Claim 2 (Conditioning Cannot Increase Entropy). Let X and Y be random variables. Then $H(X \mid Y) \leq H(X)$.

Proof. For this proof, we need Jensen's inequality:
Let f be a continuous, concave function, and let p_{1}, \ldots, p_{n} be non-negative reals that sum to 1 . For any x_{1}, \ldots, x_{n},

$$
\begin{aligned}
H(X \mid Y)-H(X)= & \sum_{x y} \operatorname{Pr}[Y=y] \operatorname{Pr}[X=x \mid Y=y] \log \left(\frac{1}{\operatorname{Pr}[X=x \mid Y=y]}\right) \\
& \quad-\sum_{x} \operatorname{Pr}[X=x] \log \left(\frac{1}{\operatorname{Pr}[X=x]}\right) \\
= & \sum_{x y} \operatorname{Pr}[Y=y] \operatorname{Pr}[X=x \mid Y=y] \log \left(\frac{1}{\operatorname{Pr}[X=x \mid Y=y]}\right) \\
& \quad-\sum_{x} \operatorname{Pr}[X=x] \log \left(\frac{1}{\operatorname{Pr}[X=x]}\right) \sum_{y} \operatorname{Pr}[Y=y \mid X=x] \\
= & \sum_{x, y} \operatorname{Pr}[X=x, Y=y] \log \left(\frac{\mathbf{P r}[X=x]}{\operatorname{Pr}[X=x \mid Y=y]}\right) \\
= & \sum_{x, y} \mathbf{P r}[X=x, Y=y] \log \left(\frac{\mathbf{P r}[X=x] \operatorname{Pr}[Y=y]}{\operatorname{Pr}[(X, Y)=(x, y)]}\right) \\
\leq & \log \left(\sum_{x, y} \mathbf{P r}[X=x, Y=y] \cdot \frac{\mathbf{P r}[X=x] \operatorname{Pr}[Y=y]}{\operatorname{Pr}[(X, Y)=(x, y)]}\right) \quad \text { (By Jensen's inequality) } \\
= & \log \left(\sum_{x, y} \mathbf{P r}[X=x] \operatorname{Pr}[Y=y]\right) \\
= & 0
\end{aligned}
$$

Equality holds when X and Y are independent.

1.4 Mutual Information

Definition (Mutual Information). $I(X ; Y)=H(X)-H(X \mid Y)$
Note that $I(X ; X)=H(X)-H(X \mid X)=H(X)$

Definition (Conditional Mutual Information). $I(X ; Y \mid Z)=H(X \mid Z)-H(X \mid Y, Z)$

This raises the question. Does conditioning on Z increase or decrease the mutual information of X and Y ? It turns out that both can be true.

Claim 3. For certain X, Y, Z, we can have $I(X ; Y \mid Z) \leq I(X ; Y)$
Proof. Consider $X=Y=Z$. Then,

- $I(X ; Y \mid Z)=H(X \mid Z)-H(X \mid Y, Z)=0-0=0$
- $I(X ; Y)=H(X)-H(X \mid Y)=H(X)-0=H(X)$

Intuitively, Y only reveals information that Z already revealed, and we are conditioning on Z being revealed.

Claim 4. For certain X, Y, Z, we can have $I(X ; Y \mid Z) \geq I(X ; Y)$
Proof. Consider $X=Y+Z \bmod 2$, where X and Y are uniform in $\{0,1\}$ Then,

- $I(X ; Y \mid Z)=H(X \mid Z)-H(X \mid Y, Z)=1-0=1$
- $I(X ; Y)=H(X)-H(X \mid Y)=1-1=0$

Intuitively, Y only reveals useful information about X after also conditioning on Z.

Claim 5 (Chain Rule for Mutual Information). $I(X, Y ; Z)=I(X ; Z)+I(Y ; Z \mid X)$ Proof.

$$
\begin{aligned}
I(X, Y ; Z) & =H(X, Y)-H(X, Y \mid Z) \\
& =H(X)+H(Y \mid X)-H(X \mid Z)--H(X, Y \mid Z) \\
& =I(X ; Z)+I(Y ; Z \mid X)
\end{aligned}
$$

By induction, it follows that

$$
I\left(X_{1}, X_{2}, \ldots, X_{n} ; Z\right)=\sum_{i} I\left(X_{i} ; Z \mid X_{1}, \ldots, X_{i-1}\right)
$$

2 Proving Fano's Inequality

Fano's Inequality is as follows:
For any estimator $X^{\prime}: X \rightarrow Y \rightarrow X^{\prime}$ with $P_{e}=\operatorname{Pr}\left[X^{\prime} \neq X\right]$, where $X \rightarrow Y \rightarrow X^{\prime}$ is a Markov Chain, that is, X^{\prime} and X are independent given Y, we have the following:

$$
H(X \mid Y) \leq H\left(P_{e}\right)+P_{e} \cdot \log (|X|-1)
$$

To prove Fano's Inequality, we need to use the data processing inequality.
Claim 6 (Data Processing Inequality). Suppose $X \rightarrow Y \rightarrow Z$ is a Markov Chain. Then,

$$
I(X ; Y) \geq I(X ; Z)
$$

That is, no clever combination of the data can improve our estimation of X.
Proof. Note that $I(X ; Y \mid Z)=I(X ; Z)+I(X ; Y \mid Z)=I(X ; Y)+I(X ; Z \mid Y)$. Thus, it suffices to show that $I(X ; Z \mid Y)=0$, since we know that $I(X ; Y \mid Z) \geq 0$.
$I(X ; Z \mid Y)=H(X \mid Y)-H(X \mid Y, Z)$.
By the Markov Chain requirement, given Y, X and Z are independent.
Thus, $H(X \mid Y, Z)=H(X \mid Y)$.
If follows that $I(X ; Z \mid Y)=0$.
Now, we can proceed with the proof for Fano's Inequality.
Let $E=1$ if $X^{\prime} \neq X$, and $E=0$ otherwise. It is an indicator variable of whether we have an error on estimating X.

$$
\begin{array}{rlr}
H(E, X \mid X) & =H\left(X \mid X^{\prime}\right)+H\left(E \mid X, X^{\prime}\right) & \quad \text { (By chain rule) } \\
& =H\left(X \mid X^{\prime}\right)+0 \quad \text { (As } X \text { and } X^{\prime} \text { together determine } E \text {) }
\end{array}
$$

$$
\begin{array}{rlr}
H(E, X \mid X) & =H\left(E \mid X^{\prime}\right)+H\left(X \mid E, X^{\prime}\right) \\
& \leq H\left(P_{e}\right)+H\left(X \mid E, X^{\prime}\right) \quad \text { (By chain rule) } \\
& =H\left(P_{e}\right)+\operatorname{Pr}[E=0] H\left(X \mid X^{\prime}, E=0\right)+\operatorname{Pr}[E=1] H\left(X \mid X^{\prime}, E=1\right) \\
& =H\left(P_{e}\right)+\left(1-P_{e}\right) \cdot 0+\left(P_{e}\right) \cdot H\left(X \mid X^{\prime}, E=1\right) \\
& \leq H\left(P_{e}\right)+P_{e} \cdot H\left(X \mid X^{\prime}, E=1\right)
\end{array}
$$

Given X^{\prime} and E, there are $|X|-1$ possible values for X, as the only condition is that it must be different from X^{\prime}. The conditional entropy $H\left(X \mid X^{\prime}, E=1\right)$ is upper bounded by the case of uniform distribution, where $H\left(X \mid X^{\prime}, E=1\right)=\log _{2}(|X|-1)$. Thus, we can conclude that:

$$
H(E, X \mid X) \leq H\left(P_{e}\right)+P_{e} \cdot H\left(X \mid X^{\prime}, E=1\right) \leq H\left(P_{e}\right)+P_{e} \cdot \log _{2}(|X|-1)
$$

Combining the above, we get

$$
\begin{equation*}
H\left(X \mid X^{\prime}\right) \leq H\left(P_{e}\right)+P_{e} \cdot \log _{2}(|X|-1) \tag{A}
\end{equation*}
$$

By the data processing inequality, we have:

$$
\begin{aligned}
I(X ; Y) \geq I\left(X ; X^{\prime}\right) & \\
& \Longrightarrow H(X)-H(X \mid Y) \geq H(X)-H\left(X \mid X^{\prime}\right) \quad \text { (By definition) } \\
& \Longrightarrow H(X \mid Y) \leq H\left(X \mid X^{\prime}\right)
\end{aligned}
$$

Combining with (A), we can conclude that

$$
H(X \mid Y) \leq H\left(X \mid X^{\prime}\right) \leq H\left(P_{e}\right)+P_{e} \cdot \log _{2}(|X|-1)
$$

2.1 Showing Tightness

Suppose the distribution p of X satisfies $p_{1} \leq p_{2} \leq . . \leq p_{n}$.
Suppose Y is a constant, so $I(X ; Y)=H(X)-H(X \mid Y)=0$.
As p_{1} is the largest discrete probability, the best predictor X^{\prime} of X is $X^{\prime}=1$.
Then, $P_{e}=\operatorname{Pr}\left[X^{\prime} \neq X\right]=1-p_{1}$.
Fano's Inequality gives the following:

$$
H(X \mid Y) \leq H\left(P_{1}\right)+\left(1-p_{1}\right) \cdot \log _{2}(n-1)
$$

Here, we can let $p_{2}=p_{3}=\ldots=p_{n}=\frac{1-p_{1}}{n-1}$.
Then, the RHS can be simplified as follows:

$$
\begin{aligned}
H\left(P_{1}\right)+\left(1-p_{1}\right) \cdot \log _{2}(n-1) & =p_{1} \log _{2} \frac{1}{p_{1}}+\left(1-p_{1}\right) \log _{2} \frac{1}{1-p_{1}}+\left(1-p_{1}\right) \cdot \log _{2}(n-1) \\
& =p_{1} \log _{2} \frac{1}{p_{1}}+\left(1-p_{1}\right)\left(\log _{2} \frac{n-1}{1-p_{1}}\right) \\
& =p_{1} \log _{2} \frac{1}{p_{1}}+\sum_{i=2, \ldots . n} \frac{1-p_{1}}{n-1}\left(\log _{2} \frac{n-1}{1-p_{1}}\right) \\
& =\sum_{i=1, \ldots . n} p_{i} \log _{2} \frac{1}{p_{i}} \\
& =H(X) \\
& =H(X \mid Y) \quad \text { (As } X \text { and } Y \text { independent) }
\end{aligned}
$$

Thus, the inequality is tight in this case.

