
CS 15-851: Algorithms for Big Data Spring 2024

Lecture 8 - 3/14/2024
Prof. David Woodruff Scribe: William Seo

The first half of this lecture covers the core concepts of information theory, the study of the
quantification, storage, and communication of information.

1 Information Theory Definitions

First, we provide the definitions of several core concepts in information theory, along with some
notable facts claims regarding these concepts.

1.1 Discrete Distributions

p is a discrete distribution over a finite support of size n if:

• p = (p1, p2, ..., pn)

• pi ∈ [0, 1] for all i ∈ [n]

•
∑

i pi = 1

X is a random variable with distribution p if Pr[X = i] = pi.

1.2 Entropy

Definition (Entropy). H(X) =
∑

i pi log2( 1
pi

)

Intuitively, entropy H(X) is a measurement of the uncertainty of X. It has the following character-
istics:

• If pi = 0, then pi log2( 1
pi

) = 0.

• H(X) ≤ log2 n. Equality holds when pi = 1
n for all i.

• If B is a bit with bias p, then

H(B) = p log2
1
p

+ (1 − p) log2
1

1 − p
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1.3 Conditional and Joint Entropy

Definition (Conditional Entropy). H(X | Y ) =
∑

y H(X | Y = y) Pr[Y = y]

Definition (Joint Entropy). H(X, Y ) =
∑

x,y Pr[(X, Y ) = (x, y)] log( 1
Pr[(X,Y )=(x,y)])

Claim 1 (Chain Rule). H(X, Y ) = H(X) + H(Y | X)

Proof.

H(X, Y ) =
∑
x,y

Pr[(X, Y ) = (x, y)] log( 1
Pr[(X, Y ) = (x, y)] ) (By definition)

=
∑
x,y

Pr[X = x]Pr[Y = y|X = x] log( 1
Pr[X = x]Pr[Y = y|X = x] )

(By chain rule for probabilities)

=
∑
x,y

Pr[X = x]Pr[Y = y|X = x](log( 1
Pr[X = x] ) + log( 1

Pr[Y = y|X = x] ))

= H(X) + H(Y | X) (By definition)

■

2



Claim 2 (Conditioning Cannot Increase Entropy). Let X and Y be random variables.
Then H(X | Y ) ≤ H(X).

Proof. For this proof, we need Jensen’s inequality:

Let f be a continuous, concave function, and let p1, ..., pn be non-negative reals that sum to 1. For
any x1, ..., xn, ∑

i=1,...,n

pif(xi) ≤ f(
∑

i=1,...,n

pixi)

H(X | Y ) − H(X) =
∑
xy

Pr[Y = y]Pr[X = x|Y = y] log( 1
Pr[X = x|Y = y] )

−
∑

x

Pr[X = x] log( 1
Pr[X = x] )

=
∑
xy

Pr[Y = y]Pr[X = x|Y = y] log( 1
Pr[X = x|Y = y] )

−
∑

x

Pr[X = x] log( 1
Pr[X = x] )

∑
y

Pr[Y = y|X = x]

=
∑
x,y

Pr[X = x, Y = y] log( Pr[X = x]
Pr[X = x|Y = y] )

=
∑
x,y

Pr[X = x, Y = y] log(Pr[X = x]Pr[Y = y]
Pr[(X, Y ) = (x, y)] )

≤ log(
∑
x,y

Pr[X = x, Y = y] · Pr[X = x]Pr[Y = y]
Pr[(X, Y ) = (x, y)] ) (By Jensen’s inequality)

= log(
∑
x,y

Pr[X = x]Pr[Y = y])

= 0

■

Equality holds when X and Y are independent.

1.4 Mutual Information

Definition (Mutual Information). I(X ; Y ) = H(X) − H(X | Y )

Note that I(X ; X) = H(X) − H(X | X) = H(X)

Definition (Conditional Mutual Information). I(X ; Y | Z) = H(X | Z) − H(X | Y, Z)

This raises the question. Does conditioning on Z increase or decrease the mutual information of X
and Y ? It turns out that both can be true.
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Claim 3. For certain X, Y, Z, we can have I(X ; Y | Z) ≤ I(X ; Y )

Proof. Consider X = Y = Z. Then,

• I(X ; Y | Z) = H(X | Z) − H(X | Y, Z) = 0 − 0 = 0

• I(X ; Y ) = H(X) − H(X | Y ) = H(X) − 0 = H(X)

Intuitively, Y only reveals information that Z already revealed, and we are conditioning on Z being
revealed. ■

Claim 4. For certain X, Y, Z, we can have I(X ; Y | Z) ≥ I(X ; Y )

Proof. Consider X = Y + Z mod 2, where X and Y are uniform in {0, 1} Then,

• I(X ; Y | Z) = H(X | Z) − H(X | Y, Z) = 1 − 0 = 1

• I(X ; Y ) = H(X) − H(X | Y ) = 1 − 1 = 0

Intuitively, Y only reveals useful information about X after also conditioning on Z. ■

Claim 5 (Chain Rule for Mutual Information). I(X, Y ; Z) = I(X ; Z) + I(Y ; Z | X)

Proof.

I(X, Y ; Z) = H(X, Y ) − H(X, Y | Z)
= H(X) + H(Y | X) − H(X | Z) − −H(X, Y | Z)
= I(X ; Z) + I(Y ; Z | X)

■

By induction, it follows that

I(X1, X2, ..., Xn ; Z) =
∑

i

I(Xi ; Z | X1, ..., Xi−1)
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2 Proving Fano’s Inequality

Fano’s Inequality is as follows:

For any estimator X ′ : X → Y → X ′ with Pe = Pr[X ′ ≠ X], where X → Y → X ′ is a Markov
Chain, that is, X ′ and X are independent given Y , we have the following:

H(X | Y ) ≤ H(Pe) + Pe · log(|X| − 1)

To prove Fano’s Inequality, we need to use the data processing inequality.

Claim 6 (Data Processing Inequality). Suppose X → Y → Z is a Markov Chain. Then,

I(X ; Y ) ≥ I(X ; Z)

That is, no clever combination of the data can improve our estimation of X.

Proof. Note that I(X ; Y | Z) = I(X ; Z) + I(X ; Y | Z) = I(X ; Y ) + I(X ; Z | Y ). Thus, it
suffices to show that I(X ; Z | Y ) = 0, since we know that I(X ; Y | Z) ≥ 0.

I(X ; Z | Y ) = H(X | Y ) − H(X | Y, Z).

By the Markov Chain requirement, given Y , X and Z are independent.
Thus, H(X | Y, Z) = H(X | Y ).

If follows that I(X ; Z | Y ) = 0. ■

Now, we can proceed with the proof for Fano’s Inequality.

Let E = 1 if X ′ ̸= X, and E = 0 otherwise. It is an indicator variable of whether we have an error
on estimating X.

H(E, X | X) = H(X | X ′) + H(E | X, X ′) (By chain rule)
= H(X | X ′) + 0 (As X and X ′ together determine E)

H(E, X | X) = H(E | X ′) + H(X | E, X ′) (By chain rule)
≤ H(Pe) + H(X | E, X ′) (As conditioning cannot increase entropy)
= H(Pe) + Pr[E = 0]H(X | X ′, E = 0) + Pr[E = 1]H(X | X ′, E = 1)
= H(Pe) + (1 − Pe) · 0 + (Pe) · H(X | X ′, E = 1)
≤ H(Pe) + Pe · H(X | X ′, E = 1)

Given X ′ and E, there are |X| − 1 possible values for X, as the only condition is that it must be
different from X ′. The conditional entropy H(X | X ′, E = 1) is upper bounded by the case of
uniform distribution, where H(X | X ′, E = 1) = log2(|X| − 1). Thus, we can conclude that:

H(E, X | X) ≤ H(Pe) + Pe · H(X | X ′, E = 1) ≤ H(Pe) + Pe · log2(|X| − 1)
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Combining the above, we get

H(X | X ′) ≤ H(Pe) + Pe · log2(|X| − 1) (A)

By the data processing inequality, we have:

I(X ; Y ) ≥ I(X ; X ′)
=⇒ H(X) − H(X | Y ) ≥ H(X) − H(X | X ′) (By definition)
=⇒ H(X | Y ) ≤ H(X | X ′)

Combining with (A), we can conclude that

H(X | Y ) ≤ H(X | X ′) ≤ H(Pe) + Pe · log2(|X| − 1)

■

2.1 Showing Tightness

Suppose the distribution p of X satisfies p1 ≤ p2 ≤ .. ≤ pn.
Suppose Y is a constant, so I(X ; Y ) = H(X) − H(X | Y ) = 0.

As p1 is the largest discrete probability, the best predictor X ′ of X is X ′ = 1.

Then, Pe = Pr[X ′ ̸= X] = 1 − p1.

Fano’s Inequality gives the following:

H(X | Y ) ≤ H(P1) + (1 − p1) · log2(n − 1)

Here, we can let p2 = p3 = ... = pn = 1−p1
n−1 .

Then, the RHS can be simplified as follows:

H(P1) + (1 − p1) · log2(n − 1) = p1 log2
1
p1

+ (1 − p1) log2
1

1 − p1
+ (1 − p1) · log2(n − 1)

= p1 log2
1
p1

+ (1 − p1)(log2
n − 1
1 − p1

)

= p1 log2
1
p1

+
∑

i=2,...n

1 − p1
n − 1 (log2

n − 1
1 − p1

)

=
∑

i=1,...n

pi log2
1
pi

= H(X)
= H(X | Y ) (As X and Y independent)

Thus, the inequality is tight in this case.
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