CS 15-851: Algorithms for Big Data Spring 2024

Lecture 8 - 3/14/2024
Prof. David Woodruff Scribe: William Seo

The first half of this lecture covers the core concepts of information theory, the study of the
quantification, storage, and communication of information.

1 Information Theory Definitions

First, we provide the definitions of several core concepts in information theory, along with some
notable facts claims regarding these concepts.

1.1 Discrete Distributions

p is a discrete distribution over a finite support of size n if:

e D= (pl)pZa "'7pn)

e p; €[0,1] for all i € [n]
« 2ipi=1

X is a random variable with distribution p if Pr[X = i] = p;.

1.2 Entropy

Definition (Entropy). H(X) = >, pi 10g2(p%)

Intuitively, entropy H(X) is a measurement of the uncertainty of X. It has the following character-
istics:

e If p; =0, then p; logQ(p%) =0.

o H(X) <logyn. Equality holds when p; = % for all 4.

o If B is a bit with bias p, then

1 1
H(B) = plog, — + (1 — p)1
(B) pog2p+( p)oggl_p



1.3 Conditional and Joint Entropy

Definition (Conditional Entropy). H(X | Y) =3, H(X | Y =y) Pr[Y =y]

Definition (Joint Entropy). H(X,Y) =3, Pr[(X,Y) = (z,y)] log(m)

Claim 1 (Chain Rule). H(X,Y)=H(X)+ H(Y | X)

Proof.

H(X,Y) =) Pr[(X)Y) = (z,y)] log(
T,y

=Y Pr[X = z|Pr[Y = y|X = 2] log(

Pri(X.V) = (2.9)] (By definition)

1
Pr[X = z|Pr[Y = y|X = x])
(By chain rule for probabilities)

=HX)+H(Y | X) (By definition)



Claim 2 (Conditioning Cannot Increase Entropy). Let X and Y be random variables.
Then H(X | Y) < H(X).
Proof. For this proof, we need Jensen’s inequality:

Let f be a continuous, concave function, and let p1, ..., p, be non-negative reals that sum to 1. For

any Ti,...,Tp,
ST opif(w) < FODY piwi)

i=1,...,n i=1,...,n

H(X |Y) ZPF PriX =alY =yllos(5 :1;U|Y=y])

- ZPr 10g(Pr[X x])

—ZPI‘ [ _$|Y—y]10g(P [ _lx‘y_y])
_Zpr = x]log( ])ZPP = y|X =1

rxX =x,Y =yjlo PriX =4

_%;P X =Y =yllog(p v =4

B X — o — ol 1o PIIX = TPTY =]

_xz’y:P [X Y =yl (P[(X,Y)*( y)])

<log(3 PrlX —2.Y =y P;jﬁ );;“])sz; yf]”) (By Jensen’s inequality)

= ]og(z PI‘[X = x]PI‘[Y = yD

=0

Equality holds when X and Y are independent.

1.4 Mutual Information
Definition (Mutual Information). I(X ; V) =H(X)-H(X |Y)

Note that I(X ; X) = H(X) - H(X | X) = H(X)

Definition (Conditional Mutual Information). I(X ; YV | Z)=H(X | Z) - H(X |Y,Z)

This raises the question. Does conditioning on Z increase or decrease the mutual information of X
and Y7 It turns out that both can be true.



Claim 3. For certain X,Y,Z, we can have [(X ; Y | Z) <I(X ; Y)
Proof. Consider X =Y = Z. Then,

« I(X ;Y |2)=H(X|Z2)—H(X |Y,Z)=0-0=0
e I(X;Y)=H(X)-H(X |Y)=H(X)—-0= H(X)

Intuitively, Y only reveals information that Z already revealed, and we are conditioning on Z being
revealed. n
Claim 4. For certain X,Y,Z, we can have [(X ; Y | Z) > I(X ; Y)

Proof. Consider X =Y + Z mod 2, where X and Y are uniform in {0,1} Then,

e (X, Y|2)=HX|2)-HX |Y,Z)=1-0=1
e I(X; Y)=HX)-H(X|Y)=1-1=0

Intuitively, Y only reveals useful information about X after also conditioning on Z. |

Claim 5 (Chain Rule for Mutual Information). I(X,Y ; Z)=1(X ; Z)+I(Y ; Z | X)

Proof.

IX,)Y; Z)=H(X,Y)-H(X,Y | Z)
—HX)+H(Y | X)-H(X | Z) - —H(X,Y | 2)
=I1(X; 2)+1(Y; Z|X)

By induction, it follows that

(X1, Xoy o Xp 5 Z) =Y I(Xi5 Z | X1, Xim1)
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2 Proving Fano’s Inequality

Fano’s Inequality is as follows:

For any estimator X' : X — Y — X’ with P, = Pr[X' # X], where X — Y — X’ is a Markov
Chain, that is, X’ and X are independent given Y, we have the following:

H(X |Y)<H(P)+ P, -log(|X]|-1)

To prove Fano’s Inequality, we need to use the data processing inequality.

Claim 6 (Data Processing Inequality). Suppose X — Y — Z is a Markov Chain. Then,
I(X;Y)>I(X; 2)

That is, no clever combination of the data can improve our estimation of X.

Proof. Note that [(X ; Y | Z2)=I1(X; 2)+I(X; Y | 2)=1(X; Y)+I(X; Z|Y). Thus, it

suffices to show that I(X ; Z | Y) = 0, since we know that I(X ; Y | Z) > 0.

I(X; Z|Y)=HX|Y)-H(X |Y,2).

By the Markov Chain requirement, given Y, X and Z are independent.
Thus, HX |Y,Z)=H(X | Y).

If follows that I(X ; Z|Y)=0. [

Now, we can proceed with the proof for Fano’s Inequality.

Let E=11if X' # X, and F = 0 otherwise. It is an indicator variable of whether we have an error
on estimating X.

HEX|X)=HX |X)+H(E| X, X (By chain rule)
=H(X|X)+0 (As X and X' together determine F)

HEX|X)=HFE|X)+HX | EX') (By chain rule)
<HP)+HX | E,X (As conditioning cannot increase entropy)
= H(P,)+Pr[E=0H(X | X, E=0)+Pr[E=1H(X | X,E=1)
—H(P,)+(1—P)-0+(P.)-HX | X ,E=1)
<HP)+P. -HX|X E=1)

Given X’ and E, there are | X| — 1 possible values for X, as the only condition is that it must be
different from X’. The conditional entropy H(X | X', E = 1) is upper bounded by the case of
uniform distribution, where H(X | X', E = 1) = logy(|X| — 1). Thus, we can conclude that:

HE,X | X)<HP.)+P.-HX | X',E=1) < HP.) + P. - log,(|X| — 1)



Combining the above, we get
H(X | X') < H(P) + Pe - logy (| X| — 1) (A)
By the data processing inequality, we have:
I(X;Y)>I(X; X'
= H(X)-HX|Y)>H(X)-H(X | X') (By definition)
X'

— H(X|Y)<H(X |

Combining with (A), we can conclude that

H(X | Y) < H(X | X') < H(P.) + P, - logy(|X| — 1)

|
2.1 Showing Tightness
Suppose the distribution p of X satisfies p1 < p2 < .. < py.
Suppose Y is a constant, so I[(X ; Y)=H(X)—-H(X |Y) =0.
As py is the largest discrete probability, the best predictor X’ of X is X' = 1.
Then, P. = Pr[X' # X]|=1—p;.
Fano’s Inequality gives the following:
H(X |Y) < H(P)+ (1—pi1)-logy(n—1)
Here, we can let po = p3 = ... = p, = ln__pll.
Then, the RHS can be simplified as follows:
1 1
H(P1) + (1 —p1) - logy(n — 1) = p1 log, ot (1 —p1)logy 1— -+ (1 —p1) - logy(n — 1)
1 n—1
=p1log, — + (1 — lo
D1 g2p1 (1 —p1)( g21_p1)
1 1—p n—1
= p; logy, — + lo
p110gy ! Z:;n n—1 (logy 1—p1)
1
= ) pilogy, —
i=1,...n v
= H(X)
=H(X|Y) (As X and Y independent)

Thus, the inequality is tight in this case.
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