CS 15-851: Algorithms for Big Data

Spring 2024

Lecture 7 - 02/29/2024

Prof. David Woodruff

Scribe: Harry H. Jiang

1 *p*-norm Estimation

Recall the sketching matrices $P \cdot D$, where P consists of a CountSketch matrix, and D consists of a diagonal matrix with diagonal elements $1/E_i^{1/p}$, with E_i being independent standard exponential random variables.

For arbitrary y, $||Dy||_{\infty}$ looks like

$$||Dy||_{\infty}^{2} = \max_{i} \frac{||y_{i}||^{p}}{E_{i}} = \frac{1}{\min_{i} \frac{E_{i}}{||y_{i}||^{p}}} \equiv \frac{1}{E/||y_{i}||_{p}^{p}} = \frac{||y_{i}||_{p}^{p}}{E}$$
(1)

and the probability of a reasonable value of E is $\mathbf{Pr}\left[E \in [1/10, 10]\right] = (1 - e^{-10}) - (1 - e^{-1/10}) > 4/5$ (this actually evaluates to just over 9/10).

As such, $||Dy||_{p}^{p}$ is a good estimate for $||y||_{p}^{p}$, but $Dy \in \mathbb{R}^{n}$ is a large vector, so sketching using matrix $P \in \mathbb{R}^{s \times n}$ is needed to reduce computation cost.

Intuitively, P is hashing coordinates of Dy into buckets and taking a signed sum; most items cancel out and then $||PDy||_{\infty} \simeq ||Dy||_{\infty}$. It is known previously that P is composed of hash functions $h : [n] \to [s]$ and $\sigma : [n] \to \{-1,1\}$ (assuming they are truly random). Given that $||Dy||_{\infty}/||y||_{p} \in [1/10^{1/p}, 10^{1/p}]$ with probability > 4/5, to achieve $||PDy||_{\infty} \simeq ||Dy||_{\infty}$ with good probability, it is necessary to have:

- 1. in each bucket i not containing the maximum value, $|(PDy)_i| \leq ||y||_p/100$
- 2. in each bucket i containing the maximum value, $\left||(PDy)_i| ||Dy||_{\infty}\right| \le ||y||_p/100$

Let $\delta(\text{event}) = 1$ if a given event holds and $\delta(\text{event}) = 0$ otherwise. It is then possible to define a given element of PDy as $(PDy)_i = \sum_j \delta(h(j) = i) \cdot \sigma_j \cdot (Dy)_j$. Due to σ , its expectation is $\mathbb{E}[(PDy)_i] = 0$. The evaluation of its variance as follows:

$$\mathbb{E}_{P}[(PDy)_{i}^{2}] = \sum_{j,j'} \mathbb{E}[\delta(h(j) = i) \cdot \delta(h(j') = i) \cdot \sigma_{j} \cdot \sigma_{j'}](Dy)_{j}(Dy)_{j'} = \frac{1}{s} ||Dy||_{2}^{2}$$
(2)

$$\mathbb{E}_{D}[||Dy||_{2}^{2}] = \sum_{i} y_{i}^{2} \mathbb{E}[D_{i,i}^{2}]$$
(3)

$$\mathbb{E}[D_{i,i}^2] = \int_0^\infty t^{\frac{2}{p}} e^{-t} dt = \int_0^1 t^{\frac{2}{p}} e^{-t} dt + \int_1^\infty t^{\frac{2}{p}} e^{-t} dt \tag{4}$$

$$\leq \int_{0}^{1} t^{\frac{2}{p}} dt + \int_{1}^{\infty} e^{-t} dt = \left(\frac{1}{1-\frac{2}{p}}\right) t^{-\frac{2}{p}} \Big|_{0}^{1} - e^{-t} \Big|_{1}^{\infty} = O(1)$$
(5)

$$\mathbb{E}_{P}[(PDy)_{i}^{2}] = O\left(\frac{1}{s}\right)||y||_{2}^{2} = O\left(\frac{1}{s}\right)(n^{1-\frac{2}{p}}||y||_{p}^{2}).$$
(6)

The last line holds due to Hölder's Inequality $(||y||_2^2 = \sum_i^n y_i^2 \leq (\sum_i^n (y_i^2)^{p/2})^{2/p} (\sum_i^n 1^q)^{1/q} = ||y||_p^2 \cdot n^{1-2/p}).$

Definition (Bernstein's Bound). Suppose independent random variables R_1, \ldots, R_n , and for all j, $|R_j| \leq K$, and $\operatorname{Var}[\sum_j R_j] = \sigma^2$. Then, there exists constants c, C such that for all t > 0,

$$\mathbf{Pr}\left[\left|\sum_{j} R_{j} - \mathbb{E}\left[\sum_{j} R_{j}\right]\right| > t\right] \le C\left(e^{-\frac{ct^{2}}{\sigma^{2}}} + e^{-\frac{ct}{K}}\right)$$
(7)

In order to get 1/poly(n) error probability, set $R_j = \delta(h(j) = i)\dot{\sigma}_j(Dy)_j$, t = ||y||p/100, and $s = \Theta(n^{1-2/p}\log n)$ to handle all parameters required for Bernstein's bound other than K.

It is possible to treat large R_j separately, where $R_j > \frac{\alpha ||y||_p}{\log n}$ for a sufficiently small $\alpha > 0$. If $|R_j| > \frac{\alpha ||y||_p}{\log n}$, then necessarily $(Dy)_j \ge \frac{\alpha ||y||_p}{\log n}$ (define j as "large" if this is the case, "small" otherwise). Then, any j may be large with probability and expectation

=

$$\mathbf{Pr}[j \text{ is large}] = \mathbf{Pr} \left[\frac{|y_j|}{E_j^{1/p}} \le \frac{\alpha ||y||_p}{\log n} \right] = \mathbf{Pr} \left[\frac{|y_j|^p}{\alpha^p ||y||_p^p} \log^p n \le E_j \right]$$
(8)

$$= 1 - e^{-\frac{|y_j|^p \log^p n}{\alpha^p ||y||_p^p}} \le \frac{|y_j|^p \log^p n}{\alpha^p ||y||_p^p}$$
(9)

$$\mathbb{E}[R_j \text{ for large } j] \le \sum_j \frac{|y_j|^p \log^p n}{\alpha^p ||y||_p^p} = \frac{\log^p n}{\alpha^p}$$
(10)

There are $s = O(n^{1-2/p}\log n)$ buckets and $\frac{\log^p n}{\alpha^p}$ items. By Markov bound, there are $O(\log^p n)$ large j with constant probability. D is conditioned on the above as well as $||Dy||_{\infty} \in [||y||_p/10^{1/p}, ||y||_p \cdot 10^{1/p}]$ (which happens with probability > 4/5). All the large j should then be perfectly hashed into separate buckets by P. (If there are b balls and Cb bins, $\mathbf{Pr}[\text{collision}] \leq {b \choose 2} 1/Cb \leq 1/2C$)

Bernstein's bound can then be applied separately for the small indices j for each hash bucket. $\mathbb{E}[(PDy)_i] = 0$ for each hash bucket i, and $\mathbb{E}[(PDy)_i^2] = O(1/s)(n^{1-2/p}||y||_p^2)$. Assuming $K = \max_j |R_j| \leq \alpha ||y||_p /\log n$ for small j in a bucket (it can be shown that $\operatorname{Var}[R_j]$ is $O(1/s)(n^{1-2/p}||y||_p^2)$ even if no j is large. Setting $t = ||y||_p/100$ and $s = \Theta(n^{1-2/p}\log n)$ in Bernstein's bound, for a bucket $(PDy)_i$

$$\mathbf{Pr}\left[\left|\sum_{\text{small } j} \delta(h(j)=i) \cdot \sigma_j \cdot (Dy)_i\right| > \frac{||y||_p}{100}\right] \le C\left(e^{-\Theta(\log n)} + e^{-c\frac{\log n}{100\alpha}}\right) \le \frac{1}{n^2} \tag{11}$$

By union bound over all s buckets, the signed sum of all small j in every bucket will be at most $||y||_p/100$. Therefore, for all i,

- 1. in each bucket i without large indices $j, |(PDy)_i| \leq ||y||_p/100$
- 2. in each bucket i with one large index j, $|(PDy)_i| = |\sigma_j(Dy)_j| \pm ||y||_p/100$

and no bucket has more than one large j as shown in the perfect hashing assumption above. Conditioning on $||Dy||_{\infty} \in [||y||_p/10^{1/p}, ||y||_p \cdot 10^{1/p}],$

$$\frac{||y||_p}{10^{\frac{1}{p}}} - \frac{||y||_p}{100} \le ||PDy||_{\infty} \le 10^{\frac{1}{p}} \cdot ||y||_p + \frac{||y||_p}{100}$$
(12)

Therefore, it is reasonable to use $||PDy||_{\infty}$ as an estimate for $||y||_p$. The total space used is $s = O(n^{1-2/p}\log n)$, i.e. $O(n^{1-2/p}\log^2 n)$ bits. This space complexity still holds even when considering the pseudorandom generation of matrix P, see [1].

2 Heavy Hitters

 l_1 guarantee: output a set containing all items j for which $|x_j| \ge \phi ||x||_1$, and the set should not contain any j with $|x_j| \le (\phi - \varepsilon) ||x||_1$.

 l_2 guarantee: output a set containing all items j for which $x_j^2 \ge \phi ||x||_2^2$, and the set should not contain any j with $x_j^2 \le (\phi - \varepsilon) ||x||_2^2$. This guarantee is much stronger: suppose $x = [\sqrt{n}, 1, \ldots, 1]$, \sqrt{n} is an l_2 -heavy hitter for constant ϕ and ε , but not an l_1 -heavy hitter. Also, if $|x_j| \ge \phi ||x||_1$, it means that $x_j^2 \ge \phi^2 ||x||_1^2 \ge \phi^2 ||x||_2^2$ as well.

References

 N. Nisan. Pseudorandom generators for space-bounded computations. In Proceedings of the Twenty-Second Annual ACM Symposium on Theory of Computing, STOC '90, page 204â212, New York, NY, USA, 1990. Association for Computing Machinery. doi:10.1145/100216.100242.