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1 p-norm Estimation

Recall the sketching matrices P - D, where P consists of a CountSketch matrix, and D consists of a
diagonal matrix with diagonal elements 1/ EZ1 /p , with F; being independent standard exponential
random variables.

For arbitrary y, ||Dy||s looks like
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and the probability of a reasonable value of F is Pr {E € [1/10, 10]} =(1—e 1) —(1—eV10) > 4/5
(this actually evaluates to just over 9/10).

As such, [[Dyl[%, is a good estimate for [[y|[}, but Dy € R" is a large vector, so sketching using
matrix P € R%*" is needed to reduce computation cost.

Intuitively, P is hashing coordinates of Dy into buckets and taking a signed sum; most items
cancel out and then ||PDyl|loc ~ ||Dy||so- It is known previously that P is composed of hash
functions h : [n] — [s] and o : [n] — {—1,1} (assuming they are truly random). Given that
||Dylloo/||yllp € [1/101/P,101/7] with probability > 4/5, to achieve ||PDy||so = ||Dy||s With good
probability, it is necessary to have:

1. in each bucket i not containing the maximum value, |(PDy);| < ||y||,/100

2. in each bucket ¢ containing the maximum value, |[(PDy);| — ||Dy||so| < ||y||p/100

Let d(event) = 1 if a given event holds and d(event) = 0 otherwise. It is then possible to define
a given element of PDy as (PDy); = >, 0(h(j) = i) - o5 - (Dy);. Due to o, its expectation is
E[(PDy);] = 0. The evaluation of its variance as follows:
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The last line holds due to Hélder’s Inequality (||y||3 = < (Sn(y2)p2)Me(yr19)t/e =
lyll5 - n'=2/7).
Definition (Bernstein’s Bound). Suppose independent random variables Ry, ..., R,, and for all j,

|Rj| < K, and Var[}; Rj] = 0. Then, there exists constants ¢, C' such that for all ¢ > 0,
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In order to get 1/poly(n) error probability, set R; = §(h(j) = z')c'fj(Dy)j, t = ||y||p/100, and
s = @(nld/ Plogn) to handle all parameters required for Bernstein’s bound other than K.

It is possible to treat large R; separately, where R; > Cﬁ!g‘n‘p for a sufficiently small o > 0. If
|R;| > all(lz!", then necessarily (Dy); > al!géyf (define j as “large” if this is the case, “small” otherwise).

Then, any j may be large with probability and expectation
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There are s = O(n'~2/Plogn) buckets and 1055" items. By Markov bound, there are O(logfn) large j

with constant probability. D is conditioned on the above as well as || Dy||oo € [||y]],/10"/7, ||y||,-10/7]
(which happens with probability > 4/5). All the large j should then be perfectly hashed into separate
buckets by P. (If there are b balls and Cb bins, Pr[collision] < (5)1/Cb < 1/20)

Bernstein’s bound can then be applied separately for the small indices j for each hash bucket.
E[(PDy);] = 0 for each hash bucket i, and E[(PDy)?] = O(l/s)(nl_pryHg). Assuming K =
max; |R;| < o|ly||p/logn for small j in a bucket (it can be shown that Var[R;] is O(l/s)(nl_z/p||y||g)



even if no j is large. Setting ¢ = ||y||,/100 and s = ©(n'~?/Plogn) in Bernstein’s bound, for a bucket
(PDy);
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By union bound over all s buckets, the signed sum of all small j in every bucket will be at most
lly||p/100. Therefore, for all 4,

1. in each bucket 7 without large indices j, |(PDy):| < ||yl||,/100

2. in each bucket ¢ with one large index j, |(PDy);| = |o;(Dy);| £ ||y||»/100

and no bucket has more than one large j as shown in the perfect hashing assumption above.
Conditioning on [|Dyl|s € [llyll,/10"7, [lyl], - 1017,
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Therefore, it is reasonable to use ||[PDyl|| as an estimate for ||y||,. The total space used is
s = O(n'~2?/Plogn), i.e. O(n'~2/Plog?n) bits. This space complexity still holds even when considering
the pseudorandom generation of matrix P, see [1].

2 Heavy Hitters

l1 guarantee: output a set containing all items j for which |z;| > ¢||z||1, and the set should not
contain any j with |z;| < (¢ —¢)||z||1.

ly guarantee: output a set containing all items j for which x? > ¢||z||3, and the set should not
contain any j with iL']Q < (¢ — ¢)||z||3. This guarantee is much stronger: suppose = = [\/n,1,...,1],
v/n is an lp-heavy hitter for constant ¢ and e, but not an /;-heavy hitter. Also, if |z;| > ¢|z]|1, it
means that l‘? > ¢?||z|12 > ¢?||x||3 as well.
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