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1 p-norm Estimation

Recall the sketching matrices P · D, where P consists of a CountSketch matrix, and D consists of a
diagonal matrix with diagonal elements 1/E

1/p
i , with Ei being independent standard exponential

random variables.

For arbitrary y, ||Dy||∞ looks like

||Dy||2∞ = max
i

||yi||p

Ei
= 1

mini
Ei

||yi||p
≡ 1

E/||yi||pp
=

||yi||pp
E

(1)

and the probability of a reasonable value of E is Pr
[
E ∈ [1/10, 10]

]
= (1−e−10)− (1−e−1/10) > 4/5

(this actually evaluates to just over 9/10).

As such, ||Dy||p∞ is a good estimate for ||y||pp, but Dy ∈ Rn is a large vector, so sketching using
matrix P ∈ Rs×n is needed to reduce computation cost.

Intuitively, P is hashing coordinates of Dy into buckets and taking a signed sum; most items
cancel out and then ||PDy||∞ ≃ ||Dy||∞. It is known previously that P is composed of hash
functions h : [n] → [s] and σ : [n] → {−1, 1} (assuming they are truly random). Given that
||Dy||∞/||y||p ∈ [1/101/p, 101/p] with probability > 4/5, to achieve ||PDy||∞ ≃ ||Dy||∞ with good
probability, it is necessary to have:

1. in each bucket i not containing the maximum value, |(PDy)i| ≤ ||y||p/100

2. in each bucket i containing the maximum value,
∣∣∣∣|(PDy)i| − ||Dy||∞

∣∣∣∣ ≤ ||y||p/100

Let δ(event) = 1 if a given event holds and δ(event) = 0 otherwise. It is then possible to define
a given element of PDy as (PDy)i =

∑
j δ(h(j) = i) · σj · (Dy)j . Due to σ, its expectation is

E[(PDy)i] = 0. The evaluation of its variance as follows:
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EP [(PDy)2
i ] =

∑
j,j′

E[δ(h(j) = i) · δ(h(j′) = i) · σj · σj′ ](Dy)j(Dy)j′ = 1
s

||Dy||22 (2)

ED[||Dy||22] =
∑

i

y2
i E[D2

i,i] (3)

E[D2
i,i] =

∫ ∞

0
t

2
p e−tdt =

∫ 1

0
t

2
p e−tdt +

∫ ∞

1
t

2
p e−tdt (4)

≤
∫ 1

0
t

2
p dt +

∫ ∞

1
e−tdt =

(
1

1 − 2
p

)
t
− 2

p

∣∣∣1
0

− e−t
∣∣∣∞
1

= O(1) (5)

EP [(PDy)2
i ] = O

(1
s

)
||y||22 = O

(1
s

)
(n1− 2

p ||y||2p). (6)

The last line holds due to Hölder’s Inequality (||y||22 =
∑n

i y2
i ≤ (

∑n
i (y2

i )p/2)2/p(
∑n

i 1q)1/q =
||y||2p · n1−2/p).

Definition (Bernstein’s Bound). Suppose independent random variables R1, . . . , Rn, and for all j,
|Rj | ≤ K, and Var[

∑
j Rj ] = σ2. Then, there exists constants c, C such that for all t > 0,

Pr

∣∣∣∣∣∣
∑

j

Rj − E[
∑

j

Rj ]

∣∣∣∣∣∣ > t

 ≤ C

(
e− ct2

σ2 + e− ct
K

)
(7)

In order to get 1/poly(n) error probability, set Rj = δ(h(j) = i)σ̇j (̇Dy)j , t = ||y||p/100, and
s = Θ(n1−2/plogn) to handle all parameters required for Bernstein’s bound other than K.

It is possible to treat large Rj separately, where Rj >
α||y||p
logn for a sufficiently small α > 0. If

|Rj | >
α||y||p
logn , then necessarily (Dy)j ≥ α||y||p

logn (define j as “large” if this is the case, “small” otherwise).
Then, any j may be large with probability and expectation

Pr[j is large] = Pr

 |yj |
E

1/p
j

≤ α||y||p
logn

 = Pr
[ |yj |p

αp||y||pp
logpn ≤ Ej

]
(8)

= 1 − e
−

|yj |plogpn

αp||y||pp ≤ |yj |plogpn

αp||y||pp
(9)

E[Rj for large j] ≤
∑

j

|yj |plogpn

αp||y||pp
= logpn

αp
(10)

There are s = O(n1−2/plogn) buckets and logpn
αp items. By Markov bound, there are O(logpn) large j

with constant probability. D is conditioned on the above as well as ||Dy||∞ ∈ [||y||p/101/p, ||y||p·101/p]
(which happens with probability > 4/5). All the large j should then be perfectly hashed into separate
buckets by P . (If there are b balls and Cb bins, Pr[collision] ≤

(b
2
)
1/Cb ≤ 1/2C)

Bernstein’s bound can then be applied separately for the small indices j for each hash bucket.
E[(PDy)i] = 0 for each hash bucket i, and E[(PDy)2

i ] = O(1/s)(n1−2/p||y||2p). Assuming K =
maxj |Rj | ≤ α||y||p/logn for small j in a bucket (it can be shown that Var[Rj ] is O(1/s)(n1−2/p||y||2p)
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even if no j is large. Setting t = ||y||p/100 and s = Θ(n1−2/plogn) in Bernstein’s bound, for a bucket
(PDy)i

Pr

∣∣∣∣∣∣
∑

small j

δ(h(j) = i) · σj · (Dy)i

∣∣∣∣∣∣ >
||y||p
100

 ≤ C
(
e−Θ(logn) + e−c logn

100α

)
≤ 1

n2 (11)

By union bound over all s buckets, the signed sum of all small j in every bucket will be at most
||y||p/100. Therefore, for all i,

1. in each bucket i without large indices j, |(PDy)i| ≤ ||y||p/100

2. in each bucket i with one large index j, |(PDy)i| = |σj(Dy)j | ± ||y||p/100

and no bucket has more than one large j as shown in the perfect hashing assumption above.
Conditioning on ||Dy||∞ ∈ [||y||p/101/p, ||y||p · 101/p],

||y||p
10

1
p

− ||y||p
100 ≤ ||PDy||∞ ≤ 10

1
p · ||y||p + ||y||p

100 (12)

Therefore, it is reasonable to use ||PDy||∞ as an estimate for ||y||p. The total space used is
s = O(n1−2/plogn), i.e. O(n1−2/plog2n) bits. This space complexity still holds even when considering
the pseudorandom generation of matrix P , see [1].

2 Heavy Hitters

l1 guarantee: output a set containing all items j for which |xj | ≥ ϕ||x||1, and the set should not
contain any j with |xj | ≤ (ϕ − ε)||x||1.

l2 guarantee: output a set containing all items j for which x2
j ≥ ϕ||x||22, and the set should not

contain any j with x2
j ≤ (ϕ − ε)||x||22. This guarantee is much stronger: suppose x = [

√
n, 1, . . . , 1],√

n is an l2-heavy hitter for constant ϕ and ε, but not an l1-heavy hitter. Also, if |xj | ≥ ϕ||x||1, it
means that x2

j ≥ ϕ2||x||21 ≥ ϕ2||x||22 as well.
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