CS 15-851: Algorithms for Big Data	Spring 2024
Lecture $7-02 / 29 / 2024$	
Prof. David Woodruff	Scribe: Harry H. Jiang

1 -norm Estimation

Recall the sketching matrices $P \cdot D$, where P consists of a CountSketch matrix, and D consists of a diagonal matrix with diagonal elements $1 / E_{i}^{1 / p}$, with E_{i} being independent standard exponential random variables.
For arbitrary $y,\|D y\|_{\infty}$ looks like

$$
\begin{equation*}
\|D y\|_{\infty}^{2}=\max _{i} \frac{\left\|y_{i}\right\|^{p}}{E_{i}}=\frac{1}{\min _{i} \frac{E_{i}}{\left\|y_{i}\right\|^{p}}} \equiv \frac{1}{E /\left\|y_{i}\right\|_{p}^{p}}=\frac{\left\|y_{i}\right\|_{p}^{p}}{E} \tag{1}
\end{equation*}
$$

and the probability of a reasonable value of E is $\operatorname{Pr}[E \in[1 / 10,10]]=\left(1-e^{-10}\right)-\left(1-e^{-1 / 10}\right)>4 / 5$ (this actually evaluates to just over $9 / 10$).

As such, $\|D y\|_{\infty}^{p}$ is a good estimate for $\|y\|_{p}^{p}$, but $D y \in \mathbb{R}^{n}$ is a large vector, so sketching using matrix $P \in \mathbb{R}^{s \times n}$ is needed to reduce computation cost.

Intuitively, P is hashing coordinates of $D y$ into buckets and taking a signed sum; most items cancel out and then $\|P D y\|_{\infty} \simeq\|D y\|_{\infty}$. It is known previously that P is composed of hash functions $h:[n] \rightarrow[s]$ and $\sigma:[n] \rightarrow\{-1,1\}$ (assuming they are truly random). Given that $\|D y\|_{\infty} /\|y\|_{p} \in\left[1 / 10^{1 / p}, 10^{1 / p}\right]$ with probability $>4 / 5$, to achieve $\|P D y\|_{\infty} \simeq\|D y\|_{\infty}$ with good probability, it is necessary to have:

1. in each bucket i not containing the maximum value, $\left|(P D y)_{i}\right| \leq\|y\|_{p} / 100$
2. in each bucket i containing the maximum value, $\left|\left|(P D y)_{i}\right|-\|D y\|_{\infty}\right| \leq\|y\|_{p} / 100$

Let $\delta($ event $)=1$ if a given event holds and $\delta($ event $)=0$ otherwise. It is then possible to define a given element of $P D y$ as $(P D y)_{i}=\sum_{j} \delta(h(j)=i) \cdot \sigma_{j} \cdot(D y)_{j}$. Due to σ, its expectation is $\mathbb{E}\left[(P D y)_{i}\right]=0$. The evaluation of its variance as follows:

$$
\begin{align*}
\mathbb{E}_{P}\left[(P D y)_{i}^{2}\right] & =\sum_{j, j^{\prime}} \mathbb{E}\left[\delta(h(j)=i) \cdot \delta\left(h\left(j^{\prime}\right)=i\right) \cdot \sigma_{j} \cdot \sigma_{j^{\prime}}\right](D y)_{j}(D y)_{j^{\prime}}=\frac{1}{s}\|D y\|_{2}^{2} \tag{2}\\
\mathbb{E}_{D}\left[\|D y\|_{2}^{2}\right] & =\sum_{i} y_{i}^{2} \mathbb{E}\left[D_{i, i}^{2}\right] \tag{3}\\
\mathbb{E}\left[D_{i, i}^{2}\right] & =\int_{0}^{\infty} t^{\frac{2}{p}} e^{-t} d t=\int_{0}^{1} t^{\frac{2}{p}} e^{-t} d t+\int_{1}^{\infty} t^{\frac{2}{p}} e^{-t} d t \tag{4}\\
& \leq \int_{0}^{1} t^{\frac{2}{p}} d t+\int_{1}^{\infty} e^{-t} d t=\left.\left(\frac{1}{1-\frac{2}{p}}\right) t^{-\frac{2}{p}}\right|_{0} ^{1}-\left.e^{-t}\right|_{1} ^{\infty}=O(1) \tag{5}\\
\mathbb{E}_{P}\left[(P D y)_{i}^{2}\right] & =O\left(\frac{1}{s}\right)\|y\|_{2}^{2}=O\left(\frac{1}{s}\right)\left(n^{1-\frac{2}{p}}\|y\|_{p}^{2}\right) . \tag{6}
\end{align*}
$$

The last line holds due to Hölder's Inequality $\left(\|y\|_{2}^{2}=\sum_{i}^{n} y_{i}^{2} \leq\left(\sum_{i}^{n}\left(y_{i}^{2}\right)^{p / 2}\right)^{2 / p}\left(\sum_{i}^{n} 1^{q}\right)^{1 / q}=\right.$ $\left.\|y\|_{p}^{2} \cdot n^{1-2 / p}\right)$.

Definition (Bernstein's Bound). Suppose independent random variables R_{1}, \ldots, R_{n}, and for all j, $\left|R_{j}\right| \leq K$, and $\operatorname{Var}\left[\sum_{j} R_{j}\right]=\sigma^{2}$. Then, there exists constants c, C such that for all $t>0$,

$$
\begin{equation*}
\operatorname{Pr}\left[\left|\sum_{j} R_{j}-\mathbb{E}\left[\sum_{j} R_{j}\right]\right|>t\right] \leq C\left(e^{-\frac{c t^{2}}{\sigma^{2}}}+e^{-\frac{c t}{K}}\right) \tag{7}
\end{equation*}
$$

In order to get $1 / \operatorname{poly}(n)$ error probability, set $R_{j}=\delta(h(j)=i) \dot{\sigma}_{j}(D y)_{j}, t=\|y\| p / 100$, and $s=\Theta\left(n^{1-2 / p} \log n\right)$ to handle all parameters required for Bernstein's bound other than K.
It is possible to treat large R_{j} separately, where $R_{j}>\frac{\alpha\|y\|_{p}}{\log n}$ for a sufficiently small $\alpha>0$. If $\left|R_{j}\right|>\frac{\alpha\|y\|_{p}}{\log n}$, then necessarily $(D y)_{j} \geq \frac{\alpha\|y\|_{p}}{\log n}$ (define j as "large" if this is the case, "small" otherwise). Then, any j may be large with probability and expectation

$$
\begin{align*}
\operatorname{Pr}[j \text { is large }] & =\operatorname{Pr}\left[\frac{\left|y_{j}\right|}{\left.E_{j}^{1 / p} \leq \frac{\alpha\|y\|_{p}}{\log n}\right]=\operatorname{Pr}\left[\frac{\left|y_{j}\right|^{p}}{\alpha^{p}\|y\|_{p}^{p}} \log ^{p} n \leq E_{j}\right]}\right. \tag{8}\\
& =1-e^{-\frac{\mid y_{j} p^{p} \log ^{p}}{\alpha^{p}\|\mid\|_{p}^{p}}} \leq \frac{\left|y_{j}\right|^{p} \log ^{p} n}{\alpha^{p}| | y \|_{p}^{p}} \tag{9}\\
\mathbb{E}\left[R_{j} \text { for large } j\right] & \leq \sum_{j} \frac{\left|y_{j}\right|^{p} \log ^{p} n}{\alpha^{p}\|y\|_{p}^{p}}=\frac{\log ^{p} n}{\alpha^{p}} \tag{10}
\end{align*}
$$

There are $s=O\left(n^{1-2 / p} \log n\right)$ buckets and $\frac{\log ^{p} n}{\alpha^{p}}$ items. By Markov bound, there are $O\left(\log ^{p} n\right)$ large j with constant probability. D is conditioned on the above as well as $\|D y\|_{\infty} \in\left[\|y\|_{p} / 10^{1 / p},\|y\|_{p} \cdot 10^{1 / p}\right]$ (which happens with probability $>4 / 5$). All the large j should then be perfectly hashed into separate buckets by P. (If there are b balls and $C b$ bins, $\operatorname{Pr}[$ collision $] \leq\binom{ b}{2} 1 / C b \leq 1 / 2 C$)
Bernstein's bound can then be applied separately for the small indices j for each hash bucket. $\mathbb{E}\left[(P D y)_{i}\right]=0$ for each hash bucket i, and $\mathbb{E}\left[(P D y)_{i}^{2}\right]=O(1 / s)\left(n^{1-2 / p}\|y\|_{p}^{2}\right)$. Assuming $K=$ $\max _{j}\left|R_{j}\right| \leq \alpha\|y\|_{p} / \log n$ for small j in a bucket (it can be shown that $\operatorname{Var}\left[R_{j}\right]$ is $O(1 / s)\left(n^{1-2 / p}\|y\|_{p}^{2}\right)$
even if no j is large. Setting $t=\|y\|_{p} / 100$ and $s=\Theta\left(n^{1-2 / p} \log n\right)$ in Bernstein's bound, for a bucket $(P D y)_{i}$

$$
\begin{equation*}
\operatorname{Pr}\left[\left|\sum_{\operatorname{small} j} \delta(h(j)=i) \cdot \sigma_{j} \cdot(D y)_{i}\right|>\frac{\|y\|_{p}}{100}\right] \leq C\left(e^{-\Theta(\log n)}+e^{-c \frac{\log n}{100 \alpha}}\right) \leq \frac{1}{n^{2}} \tag{11}
\end{equation*}
$$

By union bound over all s buckets, the signed sum of all small j in every bucket will be at most $\|y\|_{p} / 100$. Therefore, for all i,

1. in each bucket i without large indices $j,\left|(P D y)_{i}\right| \leq\|y\|_{p} / 100$
2. in each bucket i with one large index $j,\left|(P D y)_{i}\right|=\left|\sigma_{j}(D y)_{j}\right| \pm\|y\|_{p} / 100$
and no bucket has more than one large j as shown in the perfect hashing assumption above. Conditioning on $\|D y\|_{\infty} \in\left[\|y\|_{p} / 10^{1 / p},\|y\|_{p} \cdot 10^{1 / p}\right]$,

$$
\begin{equation*}
\frac{\|y\|_{p}}{10^{\frac{1}{p}}}-\frac{\|y\|_{p}}{100} \leq\|P D y\|_{\infty} \leq 10^{\frac{1}{p}} \cdot\|y\|_{p}+\frac{\|y\|_{p}}{100} \tag{12}
\end{equation*}
$$

Therefore, it is reasonable to use $\|P D y\|_{\infty}$ as an estimate for $\|y\|_{p}$. The total space used is $s=O\left(n^{1-2 / p} \log n\right)$, i.e. $O\left(n^{1-2 / p} \log ^{2} n\right)$ bits. This space complexity still holds even when considering the pseudorandom generation of matrix P, see [1].

2 Heavy Hitters

l_{1} guarantee: output a set containing all items j for which $\left|x_{j}\right| \geq \phi| | x \|_{1}$, and the set should not contain any j with $\left|x_{j}\right| \leq(\phi-\varepsilon) \|\left. x\right|_{1}$.
l_{2} guarantee: output a set containing all items j for which $x_{j}^{2} \geq \phi\|x\|_{2}^{2}$, and the set should not contain any j with $x_{j}^{2} \leq(\phi-\varepsilon)\|x\|_{2}^{2}$. This guarantee is much stronger: suppose $x=[\sqrt{n}, 1, \ldots, 1]$, \sqrt{n} is an l_{2}-heavy hitter for constant ϕ and ε, but not an l_{1}-heavy hitter. Also, if $\left|x_{j}\right| \geq \phi\|x\|_{1}$, it means that $x_{j}^{2} \geq \phi^{2}\|x\|_{1}^{2} \geq \phi^{2}\|x\|_{2}^{2}$ as well.

References

[1] N. Nisan. Pseudorandom generators for space-bounded computations. In Proceedings of the Twenty-Second Annual ACM Symposium on Theory of Computing, STOC '90, page 204â212, New York, NY, USA, 1990. Association for Computing Machinery. doi:10.1145/100216.100242.

