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1 Recap: Turnstile Streaming Model

Given a size-n vector x we want to approximate the result of the following procedure using only
O(log n) bits of space:
1. Initialize x to 0,,.

2. Sequentially update x using the formula z; - x;+A; where A; € {—M, ..., M}, M € poly(n).

In the previous class, we have shown:

1. To test if x = 0,, we can use CountSketch which can be hashed using O(logn) bits.

2. Any deterministic algorithm would require Q(nlogn) bits of space to test if x = 0,,.

2 Recovering a k-Sparse Vector

In network traffic, it is common that only a few entries change across time. This leads us to the
problem of k-sparse vector recovery: promised that there are k non-zero entries at the end of the
stream, can you recover the k non-zero entries? It turns out there exists a solution to this problem
that only requires k ploy(log n) bits of memory.

Remark 1. Recovering here means there is a bijection between our representation and x. For now,
we focus on the memory requirement, and leave the discussion of how this process is carried out to
future classes.

Remark 2. The algorithm puts no requirement for the number of non-zero entries in the middle of
the stream.

Let A be an s X n matrix such that any 2k columns are linearly independent, we claim that
Claim 1. From A - x you can recover the subset S of k non-zero entries and there values.
Proof. Proof by contradiction. Suppose there were vectors x and y with at most k& non-zero entries

and A-x = A-y. Now A(x —y) = 0. However, 2 — y has at most 2k non-zero entries, and any 2k
columns of A are linearly independent. So x —y =0, i.e., x = y. |



We can deterministically recover vector x with a fixed A. However, A has shape s x n, and a naive
way to store A exceeds the memory budget. The question remains to find a memory efficient way to
store A.

The solution is the Vandermonde matrix. For a Vandermonde matrix A € Ropyn, A;j = 51 We
can verify that any 2k x 2k sub-matrix of A are linearly independent by computing the determinant
of it, which is I1;i;IL; (i; — ij) for sub-matrix of columns {i1, ..., i }.

As the enrties of A grow exponentially with n, it may require O(n) bits to store each entry of
A - x. We can improve this by storing A -2 mod p for large enough prime p = poly(n) because the
determinant remains non-zero for every sub-matrix.

Till now, we have found a deterministic approach that can solve the k-sparse vector in kO(log(n))
space. Given that we need at least klog(n) bits to write down the the outputs EL our solution is
only one constant factor to the optimum.

3 Estimating Norms in the Streaming

In this section, we want to find z such that

9
(1—=e)x[) <z < (1+¢€)[x[) with probability > 10 (1)

where |x[b = 37" |z [P

3.1 Euclidean Norm: p =2

To find z such that (1 —¢€)[x|3 < 2z < (1 + €)|x|3, we do the following:
1. Sample a CountSketch matrix S with E% TOWS.

2. For each update z; <= x; + A; do Sx < Sx + A;S,;.

3. Output |Sx|3 at the end.

Using the subspace embedding property of S, with probability > &, we have |Sx[3 = (1 £ €)[x/[3.

The space complexity of the algorithm is 6% words, and each word is O(log n) bits.

3.2 1-Norm: p=1

To find z such that (1 —€)|x|; <z < (1 + €)|x]1, we do the following:

1. Sample a Cauchy matrix S with 6% rOWS.

2. For each update x; <= x; + A; do Sx < Sx+ A;S,;.

"Writing down the indices needs log(XF_ (N)) = kO(log n) potential choices of indices.

%



3. Output median of [(Sx)1[, [(SX)2], ..., [(5%)/e].

Lemma 1. Let S € R™"™ be a matriz of Cauchy random variables. For any x € R™, constant
5 €(0,1), e >0, and r = O(%), we have z = median;—1,...,|(Sx)i| = (1 + €)||z||1 with probability
1-9.

Proof. By the 1-stable property of the Cauchy random variables, |(Sx);| = |z|1|C;|, where C;s are
Cauchy random variables. So it suffies to prove median;|C;| = 1 te.

The PDF function of |C;| is f(x) = ﬁ, x > 0. The CDF function of |C;| is F(z) = [; f(z)dz =

2aretan(z), z > 0.
Let Zi = 1p(c,y<i_e and Z = X;Z;. Then E[Z] = r(3 — €o). By applying Chernoff bound, we have
i)>3
PriZ >t < Pr(|Z — E[Z]| > eor] < e
By setting r = E%log%, Pr(Z <g]>1- % This means half of the |C;|s is smaller than % — %.
0

Similarly, we can prove that half of the |C;|s are larger than % + €9 with probability 1 — %.
Finally, by Union bound, with probability 1 — §, the median of the median;|C;| € (Ffl(%

€0), F71(3 + €0)) = 1 £ 4eo. Setting €9 = £ concludes the proof. [ ]

3.3 p-Norm estimation 0 < p < 2

This can be achieved in }2 words of space by using a p-stable distribution.

Definition. A distribution II is p-stable if given any fixed vector V € R™ and independent samples
Xi,...,Xp ~1I, X;V; = X - | V|, where X ~II

Remark 3. p-stable distribution only exists for 0 < p < 2. There is no close formed expression for
general p-stable distribution, but they can be efficiently sampled: if § € [-7, §] and r € [0, 1] are

sin(pf) (Cos(fg[p )))Tp is sampled from a p-stable distribution.

uniformly random, then I
cosP O

3.4 p-Norm Estimation for p > 2

For p > 2, since p-stable distributions do not exist, we need to consider alternative methods for
estimating the p-norm. This estimation requires Q(nl_Q/ P) bits of space. We approach this challenge
using exponential random variables (R.V.s) and properties of the minimum of these variables.

The method involves the use of exponential random variables E(\) with the following properties:

« PDF: f(x) = X\e™** for 2 > 0, 0 otherwise.

o CDF: F(z) =1—¢ for z > 0.

o[>

o For any scalar ¢t > 0, if ¢ - F is considered, the CDF is F(z) =1 —e~



The min-stability property of exponential random variables is crucial for our estimation tech-
nique. Given independent exponential random variables FEi,..., E, and scalars |y1], ..., |yn|, let
g = min(Ey/|y1]?, ..., En/|yn|P). The probability that ¢ > x is given by the product of individual
probabilities, leading to Pr[q > z] = e™* Llwilt = =z \y|§7 indicating that ¢ behaves as an exponential
random variable parameterized by |y|P.

To construct our estimator, we use a P - D sketch, where P is an O(n1_2/ P) x n CountSketch matrix,

and D is a diagonal matrix with entries 1/ Ez1 /p , where E; are standard exponential R.V.s. For any
vector y, this setup allows us to approximate \y\g efficiently.

The estimation process is then as follows:

1. Construct P and D as described.
2. Calculate using P- D -y.

3. Estimate |y|p using the maximum of the result vector.

We first look at |D - y|2 . Because of the min-stability property, we have |Dy[? = maxi(%) =

p
—Ll— = % Then, because Pr[E € (1—10,10)] =(1- e‘ﬁ) —(1—-et) > %, we know that
mini 77
|Dy|oo € [1|é’1|7p, 10/7|y|,,] with probability at least %.

Although |Dy| is a good estimation for the p-norm of (y), it takes n bits to store the result. In the
later of this lecture, we will investigate how to use the count sketch matrix P to reduce the space
requirement to preserve the p-Norm. The intuition is that count sketch can preserve the maximum
by randomly distributing values into buckets.
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