
CS 15-851: Algorithms for Big Data Spring 2024

Lecture 6 Part 1— February 22
Prof. David Woodruff Scribe: Mahbod Majid

1 ℓ1 Regression

The ℓ1 norm is defined as follows:

Definition (ℓ1 Regression). Given an n × d matrix A and a vector b ∈ Rn, find x ∈ Rd such that

min
x∈Rd

∥Ax − b∥1.

The ℓ1 regression problem can be solved optimally in time O(nd), using linear programming.
However, this would be computationally expensive for large n. In order to solve this problem more
efficiently, we can use sketching.

1.1 Well-Conditioned Bases

In the ℓ2 case we knew that ℓ2 norm of vectors are preserved under orthonormal transformations.
However, in the ℓ1 case, we need to find a well-conditioned basis. More specifically, for an n × d
matrix A, we can choose an n × d matrix U with orthonormal columns such that A = UW , and
∥Ux∥2 = ∥x∥2 for all x. Drawing inspiration from the ℓ2 case we can ask the following question for
the ℓ1 case:

Given a matrix A, can we find a matrix U for which A = UW and ∥Ux∥1 ≈ ∥x∥1 for all
x?

For simplicity, we can define the following norm for a vector x and a full rank matrix Q:

Definition ((Q, 1)-norm). Assume Q is a matrix with full rank, then for a vector z ∈ Rd, we define
its (Q, 1)-norm as follows:

∥z∥Q,1 := ∥Qz∥1.

It can be shown that ∥·∥Q,1 is a norm.

We can consider the unit ball of ∥·∥Q,1, which is defined as follows: let C :=
{

z ∈ Rd
∣∣∣ ∥x∥Q,1 ⩽ 1

}
be the unit ball of ∥·∥Q,1. It can be observed that C is a convex set which is symmetric about the
origin. The following theorem shows that we can find an ellipsoid E such that E ⊆ C ⊆

√
dE.

Theorem 1 (Lowner-John Ellipsoid ). Let K be a convex body (a compact convex set with non-empty
interior) in Rd. Moreover, assume K is symmetric about the origin. Then there exists an ellipsoid
E such that

E ⊆ C ⊆
√

dE,
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where
E =

{
z ∈ Rd

∣∣∣ zTFz ⩽ 1
}

,

and F = GTG for some G ∈ Rd×d.

As an application of the above theorem we can show the following lemma:

Lemma 1 (Löwner-John Ellipsoid for (Q, 1)-norm). Let Q be a full rank d × d matrix. Then there
exists a full rank d × d matrix G such that

∀z ∈ Rd : (zTFz)0.5 ⩽ ∥z∥Q,1 ⩽
√

d(zTFz)0.5,

where F = GTG.

Recall that our goal is to find a matrix U such that ∥Ux∥1 ≈ ∥x∥1 for all x. We can use the lemma
above to find such a matrix U .

Theorem 2 (Existence of Well Conditioned Basis). Given a full rank d × d matrix Q, there exists
full rank matrices U and G such that Q = UG, and

∀x ∈ Rd : 1√
d

∥x∥1 ⩽ ∥Ux∥1 ⩽
√

d∥x∥1.

Moreover, we call U with the above properties a well-conditioned basis for Q.

Proof. Let G be as in Lemma 1 for Q. Let F = GTG. Then for all z ∈ Rd, we have

(zTFz)0.5 ⩽ ∥z∥Q,1 ⩽
√

d(zTFz)0.5.

Let U = QG−1, and take z = G−1x. Then for all x ∈ Rd, we have

(xTx)0.5 ⩽ ∥Ux∥1 ⩽
√

d(xTx)0.5.

Therefore,
∥x∥2 ⩽ ∥Ux∥1 ⩽

√
d∥x∥2.

Note that ∥x∥2 ⩽ ∥x∥1 ⩽
√

d∥x∥2, so we have

1√
d

∥x∥1 ⩽ ∥Ux∥1 ⩽
√

d∥x∥1,

as desired. ■

1.2 Net for the Unit ℓ1 Ball

Similar to the ℓ2 case,another ingredient we need is a net for the unit ℓ1 ball. Consider the unit
ℓ1 ball Bd

1 =
{

x ∈ Rd
∣∣∣ ∥x∥1 ⩽ 1

}
. We want to construct N such that it is a γ-net for Bd

1 : for all
x ∈ Bd

1 , there exists y ∈ N such that ∥x − y∥1 ⩽ γ.

Lemma 2. There exists a γ-net N for Bd
1 of size at most (2+γ

γ )d.
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Proof. We construct N greedily as follows: while there exists a point x ∈ B of distance larger than
γ from every point in N , include x in N . Now we use a volume argument to show that the size
of N is small. The ℓ1-ball of radius γ/2 around every point in N contained in the ℓ1 all of radius
1 + γ/2 around 0d, and all such balls are disjoint.

Consider the volume ratio of the ℓ1 ball of radius 1 + γ/2 to the ℓ1 ball of radius γ/2. We have

|N | ⩽ Vol(Bd
1(1 + γ/2))

Vol(Bd
1γ/2)

= (1 + γ/2
γ/2 )d = (2 + γ

γ
)d.

■

Our goal is to construct a cover for the unit ℓ1 ball, using members of the image of U . Let N
be a (γ/d)-net for the unit ℓ1-ball B, as above. Let M be the transformation of N under U , i.e.
M = {Ux | x ∈ N}. Note that |M | ⩽ (1 + γ/(2d)d)/(γ/(2d)d). We claim that M is a γ-cover for
unit ℓ1 ball B.

Claim 1. Let A = UW for a well conditioned basis U , and M the transformation of a (γ/d)-net N
for the unit ℓ1-ball B under U . Then M is a γ-cover for B.

Proof. Let x ∈ B. Then there exists z ∈ N such that ∥x − z∥1 ⩽ γ/d. Then

∥Ux − Uz∥1 ⩽
√

d∥x − z∥2 ⩽
√

d∥x − z∥1 ⩽
√

d(γ/d) = γ.

Therefore, Uz ∈ M is a γ-approximation to Ux, and hence M is a γ-cover for B. ■

Therefore, for a well-conditioned basis U , there exists a γ-cover M for the unit ℓ1 ball B, with
members of the image of U . Note that here |M | ⩽ (d/γ)O(d), and this would lead to an additional
log d factor compared to the ℓ2 result.

1.3 Overview of the Algorithm

A naive method to solve the ℓ1 regression problem is to solve the problem over a sampled subset of
the rows of A. Uniform sampling of the rows of A is not a good idea, as we may miss a row of A
that is very different from others. Recall that sampling proportional to the squared ℓ2 norm of U
in the ℓ2 case, led to a good sampling strategy. We can use a similar strategy in the ℓ1 case, by
sampling proportional to the ℓ1 norm of U , where A = UW , and U is a well-conditioned basis for A.

The steps to solve the ℓ1 regression problem is as follows:

1. Compute poly(d)-approximation: Find x′ such that ∥Ax′ − b∥1 ⩽ poly(d) minx∈Rd∥Ax − b∥1.
Let b′ = b − Ax′ be the residual. Then we have ∥A(x + x′) − b∥1 = ∥Ax − b′∥1 for any x ∈ Rd.
This can be viewed as the original problem with a change of variables.

2. Compute well-conditioned basis: Compute U such that A = UW , and U is a well-conditioned
basis for A: 1

poly(d)∥x∥1 ⩽ ∥Ux∥1 ⩽ poly(d)∥x∥1 for all x ∈ Rd. We can then consider the
problem of miny∈Rd∥Uy − b′∥1. If y is a minimizer of this problem, then x = W −1y is a
minimizer of minx∈Rd∥Ax − b′∥1.
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3. Sample poly(d/ε) rows from U the well-conditioned basis and the residual b′ proportional
to their ℓ1 norm. According to the two above steps minimizing ∥Ux − b′∥1 is equivalent to
minimizing the original problem.

After taking these steps applying generic linear programming to the sampled rows of U and b′ will
be sufficient.

Now let’s focus on showing how to perform the first two steps quickly.

1. Compute a poly(d)-approximation.

2. Compute a well-conditioned basis.

1.4 Sketching Theorem

The following theorem shows that sketching matrix distributions exist that embed a subspace up to
a d log d factor in ℓ1 norm.

Theorem 3 (ℓ1 Embedding). There is a probability space over (d log d) × n matrices R such that
for and n × d matrix A, with probability at least 0.99, for all x ∈ Rd,

∥Ax∥1 ⩽ ∥RAx∥1 ⩽ (d log d)∥Ax∥1.

Note that here R is linear, and is independent of A and it preservers the ℓ1 norm of an infinite
number of vectors.

Before proving the theorem, let’s see how we may apply it to the ℓ1 regression problem.

1.5 Application of Sketching Theorem

Suppose a sketching matrix R is given such that for all x ∈ Rd, we have

∥Ax∥1 ⩽ ∥RAx∥1 ⩽ (d log d)∥Ax∥1.

Then we can use RA and Rb to solve the ℓ1 regression problem. We use this to compute a
poly(d)-approximation to the ℓ1 regression problem, and then compute a well-conditioned basis,
efficiently

1.5.1 Computing a d log d-approximation

The algorithm is as follows:

1. Compute RA, and Rb.

2. Solve the ℓ1 regression problem for RA and Rb. Let x′ be the solution. This can be done
efficiently because R reduces the size and RA and Rb have d log d rows. Then we have

∥Ax′ − b∥1 ⩽ ∥RAx′ − Rb∥1 ⩽ ∥RAx∗ − Rb∥1 ⩽ d log d∥Ax∗ − b∥1,

where x∗ is the optimal solution to the original problem.
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This gives us a poly(d)-approximation to the ℓ1 regression problem.

1.5.2 Computing a well-conditioned basis

The algorithm is as follows:

1. RA.

2. Compute W such that RAW is orthonormal (in the ℓ2 sense)

3. Output U = AW .

Then U = AW will be a well-conditioned basis. To see this note that

∥AWx∥1 ⩽ ∥RAW∥1

⩽ (d log d)0.5∥RAWx∥2

⩽ (d log d)0.5∥x∥2

⩽ (d log d)0.5∥x∥1,

and

∥AWx∥1 ⩾
1

d log d
∥RAW∥1

⩾
1

d log d
∥RAWx∥2

⩾
1

d log d
∥x∥2

⩾
1

d3/2 log d
∥x∥1.

1.6 Proof of Sketching Theorem

What is a good sketching matrix? Subgaussian random variables are not good for sketching
in ℓ1. We should look for a family of heavy tailed distributions. One such distribution is the Cauchy
distribution. One choice of R that can be shown to work is as follows: the entries of R are i.i.d.
Cauchy random variables scaled by (d log d)−1.

Definition (Cauchy Random Variable). A random variable X is Cauchy distributed if it has the
density function

f(x) = 1
π(1 + x2) .

This distribution has heavy tails, and is symmetric about the origin. Furthermore its expectation is
undefined and the variance is infinite.

Recall that Gaussians are 2-stable. For Cauchy random variables it can be shown that they’re
1-stable.
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Fact 1 (Cauchy is 1-stable). Xi’s are independent Cauchy random variables, then for any a ∈ Rn,

n∑
i=1

aiXi ∼ ∥
n∑

i=1
ai∥1 · Z,

where Z is a Cauchy random variable.

Now since Cauchy is 1-stable, we know that for every row r in R

⟨r, Ax⟩ = ∥Ax∥1 · Z/(d log d),

where Z is a Cauchy random variable. Then

RAx = (∥Ax∥1 · Z1, . . . , ∥Ax∥1 · Zd log d) /(d log d),

where Z1, . . . , Zd log d are i.i.d. Cauchy random variables. Now we can write

∥RAx∥1 = ∥Ax∥1
∑

j

|Zj |/(d log d),

where |Zj |’s are i.i.d. half-Cauchy random variables. We are interested in proving upper and lower
bounds on this quantity.

In order to prove lower bounds, let Xj = 1 [|Zj | > 0.2], then X ′
js are i.i.d. Bernoulli random

variables with P[Xj = 1] ⩾ 0.01. Then we can apply a Chernoff’s bound

P

∑
j

Xj ⩽ 0.01d log d

 ⩽ exp(−Θ(d log d)).

Therefore, ∑
j

|Zj | = Ω(d log d)

with probability 1 − exp(−d log d).

The other direction is more difficult, since
∑

j |Zj | is heavy-tailed.

Please refer to the next lecture for the rest of the proof.
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