| CS 15-851: Algorithms for Big Data | Spring 2024 |
| :--- | ---: | ---: |
| Lecture 6 Part 1— February 22 | |
| Prof. David Woodruff | Scribe: Mahbod Majid |

$1 \ell_{1}$ Regression

The ℓ_{1} norm is defined as follows:
Definition (ℓ_{1} Regression). Given an $n \times d$ matrix A and a vector $b \in \mathbb{R}^{n}$, find $x \in \mathbb{R}^{d}$ such that

$$
\min _{x \in \mathbb{R}^{d}}\|A x-b\|_{1}
$$

The ℓ_{1} regression problem can be solved optimally in time $\mathcal{O}(n d)$, using linear programming. However, this would be computationally expensive for large n. In order to solve this problem more efficiently, we can use sketching.

1.1 Well-Conditioned Bases

In the ℓ_{2} case we knew that ℓ_{2} norm of vectors are preserved under orthonormal transformations. However, in the ℓ_{1} case, we need to find a well-conditioned basis. More specifically, for an $n \times d$ matrix A, we can choose an $n \times d$ matrix U with orthonormal columns such that $A=U W$, and $\|U x\|_{2}=\|x\|_{2}$ for all x . Drawing inspiration from the ℓ_{2} case we can ask the following question for the ℓ_{1} case:

Given a matrix A, can we find a matrix U for which $A=U W$ and $\|U x\|_{1} \approx\|x\|_{1}$ for all x ?

For simplicity, we can define the following norm for a vector x and a full rank matrix Q :
Definition $\left((Q, 1)\right.$-norm). Assume Q is a matrix with full rank, then for a vector $z \in \mathbb{R}^{d}$, we define its ($Q, 1$)-norm as follows:

$$
\|z\|_{Q, 1}:=\|Q z\|_{1} .
$$

It can be shown that $\|\cdot\|_{Q, 1}$ is a norm.
We can consider the unit ball of $\|\cdot\|_{Q, 1}$, which is defined as follows: let $C:=\left\{z \in \mathbb{R}^{d} \mid\|x\|_{Q, 1} \leqslant 1\right\}$ be the unit ball of $\|\cdot\|_{Q, 1}$. It can be observed that C is a convex set which is symmetric about the origin. The following theorem shows that we can find an ellipsoid E such that $E \subseteq C \subseteq \sqrt{d} E$.

Theorem 1 (Lowner-John Ellipsoid). Let K be a convex body (a compact convex set with non-empty interior) in \mathbb{R}^{d}. Moreover, assume K is symmetric about the origin. Then there exists an ellipsoid E such that

$$
E \subseteq C \subseteq \sqrt{d} E
$$

where

$$
E=\left\{z \in \mathbb{R}^{d} \mid z^{\top} F z \leqslant 1\right\}
$$

and $F=G^{\top} G$ for some $G \in \mathbb{R}^{d \times d}$.

As an application of the above theorem we can show the following lemma:
Lemma 1 (Löwner-John Ellipsoid for ($Q, 1$)-norm). Let Q be a full rank $d \times d$ matrix. Then there exists a full rank $d \times d$ matrix G such that

$$
\forall z \in \mathbb{R}^{d}: \quad\left(z^{\top} F z\right)^{0.5} \leqslant\|z\|_{Q, 1} \leqslant \sqrt{d}\left(z^{\top} F z\right)^{0.5}
$$

where $F=G^{\top} G$.

Recall that our goal is to find a matrix U such that $\|U x\|_{1} \approx\|x\|_{1}$ for all x. We can use the lemma above to find such a matrix U.

Theorem 2 (Existence of Well Conditioned Basis). Given a full rank $d \times d$ matrix Q, there exists full rank matrices U and G such that $Q=U G$, and

$$
\forall x \in \mathbb{R}^{d}: \quad \frac{1}{\sqrt{d}}\|x\|_{1} \leqslant\|U x\|_{1} \leqslant \sqrt{d}\|x\|_{1}
$$

Moreover, we call U with the above properties a well-conditioned basis for Q.

Proof. Let G be as in Lemma 1 for Q. Let $F=G^{\top} G$. Then for all $z \in \mathbb{R}^{d}$, we have

$$
\left(z^{\top} F z\right)^{0.5} \leqslant\|z\|_{Q, 1} \leqslant \sqrt{d}\left(z^{\top} F z\right)^{0.5}
$$

Let $U=Q G^{-1}$, and take $z=G^{-1} x$. Then for all $x \in \mathbb{R}^{d}$, we have

$$
\left(x^{\top} x\right)^{0.5} \leqslant\|U x\|_{1} \leqslant \sqrt{d}\left(x^{\top} x\right)^{0.5}
$$

Therefore,

$$
\|x\|_{2} \leqslant\|U x\|_{1} \leqslant \sqrt{d}\|x\|_{2}
$$

Note that $\|x\|_{2} \leqslant\|x\|_{1} \leqslant \sqrt{d}\|x\|_{2}$, so we have

$$
\frac{1}{\sqrt{d}}\|x\|_{1} \leqslant\|U x\|_{1} \leqslant \sqrt{d}\|x\|_{1}
$$

as desired.

1.2 Net for the Unit ℓ_{1} Ball

Similar to the ℓ_{2} case, another ingredient we need is a net for the unit ℓ_{1} ball. Consider the unit ℓ_{1} ball $B_{1}^{d}=\left\{x \in \mathbb{R}^{d} \mid\|x\|_{1} \leqslant 1\right\}$. We want to construct N such that it is a γ-net for B_{1}^{d} : for all $x \in B_{1}^{d}$, there exists $y \in N$ such that $\|x-y\|_{1} \leqslant \gamma$.

Lemma 2. There exists a γ-net N for B_{1}^{d} of size at most $\left(\frac{2+\gamma}{\gamma}\right)^{d}$.

Proof. We construct N greedily as follows: while there exists a point $x \in B$ of distance larger than γ from every point in N, include x in N. Now we use a volume argument to show that the size of N is small. The ℓ_{1}-ball of radius $\gamma / 2$ around every point in N contained in the ℓ_{1} all of radius $1+\gamma / 2$ around 0^{d}, and all such balls are disjoint.

Consider the volume ratio of the ℓ_{1} ball of radius $1+\gamma / 2$ to the ℓ_{1} ball of radius $\gamma / 2$. We have

$$
|N| \leqslant \frac{\operatorname{Vol}\left(B_{1}^{d}(1+\gamma / 2)\right)}{\operatorname{Vol}\left(B_{1}^{d} \gamma / 2\right)}=\left(\frac{1+\gamma / 2}{\gamma / 2}\right)^{d}=\left(\frac{2+\gamma}{\gamma}\right)^{d} .
$$

Our goal is to construct a cover for the unit ℓ_{1} ball, using members of the image of U. Let N be a (γ / d)-net for the unit ℓ_{1}-ball B, as above. Let M be the transformation of N under U, i.e. $M=\{U x \mid x \in N\}$. Note that $|M| \leqslant\left(1+\gamma /(2 d)^{d}\right) /\left(\gamma /(2 d)^{d}\right)$. We claim that M is a γ-cover for unit ℓ_{1} ball B.

Claim 1. Let $A=U W$ for a well conditioned basis U, and M the transformation of a (γ / d)-net N for the unit ℓ_{1}-ball B under U. Then M is a γ-cover for B.

Proof. Let $x \in B$. Then there exists $z \in N$ such that $\|x-z\|_{1} \leqslant \gamma / d$. Then

$$
\|U x-U z\|_{1} \leqslant \sqrt{d}\|x-z\|_{2} \leqslant \sqrt{d}\|x-z\|_{1} \leqslant \sqrt{d}(\gamma / d)=\gamma .
$$

Therefore, $U z \in M$ is a γ-approximation to $U x$, and hence M is a γ-cover for B.
Therefore, for a well-conditioned basis U, there exists a γ-cover M for the unit ℓ_{1} ball B, with members of the image of U. Note that here $|M| \leqslant(d / \gamma)^{\mathcal{O}(d)}$, and this would lead to an additional $\log d$ factor compared to the ℓ_{2} result.

1.3 Overview of the Algorithm

A naive method to solve the ℓ_{1} regression problem is to solve the problem over a sampled subset of the rows of A. Uniform sampling of the rows of A is not a good idea, as we may miss a row of A that is very different from others. Recall that sampling proportional to the squared ℓ_{2} norm of U in the ℓ_{2} case, led to a good sampling strategy. We can use a similar strategy in the ℓ_{1} case, by sampling proportional to the ℓ_{1} norm of U, where $A=U W$, and U is a well-conditioned basis for A.

The steps to solve the ℓ_{1} regression problem is as follows:

1. Compute poly (d)-approximation: Find x^{\prime} such that $\left\|A x^{\prime}-b\right\|_{1} \leqslant \operatorname{poly}(d) \min _{x \in \mathbb{R}^{d}}\|A x-b\|_{1}$. Let $b^{\prime}=b-A x^{\prime}$ be the residual. Then we have $\left\|A\left(x+x^{\prime}\right)-b\right\|_{1}=\left\|A x-b^{\prime}\right\|_{1}$ for any $x \in \mathbb{R}^{d}$. This can be viewed as the original problem with a change of variables.
2. Compute well-conditioned basis: Compute U such that $A=U W$, and U is a well-conditioned basis for $A: \frac{1}{\operatorname{poly}(d)}\|x\|_{1} \leqslant\|U x\|_{1} \leqslant \operatorname{poly}(d)\|x\|_{1}$ for all $x \in \mathbb{R}^{d}$. We can then consider the problem of $\min _{y \in \mathbb{R}^{d}}\left\|U y-b^{\prime}\right\|_{1}$. If y is a minimizer of this problem, then $x=W^{-1} y$ is a minimizer of $\min _{x \in \mathbb{R}^{d}}\left\|A x-b^{\prime}\right\|_{1}$.
3. Sample poly (d / ε) rows from U the well-conditioned basis and the residual b^{\prime} proportional to their ℓ_{1} norm. According to the two above steps minimizing $\left\|U x-b^{\prime}\right\|_{1}$ is equivalent to minimizing the original problem.

After taking these steps applying generic linear programming to the sampled rows of U and b^{\prime} will be sufficient.

Now let's focus on showing how to perform the first two steps quickly.

1. Compute a poly (d)-approximation.
2. Compute a well-conditioned basis.

1.4 Sketching Theorem

The following theorem shows that sketching matrix distributions exist that embed a subspace up to a $d \log d$ factor in ℓ_{1} norm.
Theorem 3 (ℓ_{1} Embedding). There is a probability space over $(d \log d) \times n$ matrices R such that for and $n \times d$ matrix A, with probability at least 0.99 , for all $x \in \mathbb{R}^{d}$,

$$
\|A x\|_{1} \leqslant\|R A x\|_{1} \leqslant(d \log d)\|A x\|_{1} .
$$

Note that here R is linear, and is independent of A and it preservers the ℓ_{1} norm of an infinite number of vectors.

Before proving the theorem, let's see how we may apply it to the ℓ_{1} regression problem.

1.5 Application of Sketching Theorem

Suppose a sketching matrix R is given such that for all $x \in \mathbb{R}^{d}$, we have

$$
\|A x\|_{1} \leqslant\|R A x\|_{1} \leqslant(d \log d)\|A x\|_{1} .
$$

Then we can use $R A$ and $R b$ to solve the ℓ_{1} regression problem. We use this to compute a $\operatorname{poly}(d)$-approximation to the ℓ_{1} regression problem, and then compute a well-conditioned basis, efficiently

1.5.1 Computing a $d \log d$-approximation

The algorithm is as follows:

1. Compute $R A$, and $R b$.
2. Solve the ℓ_{1} regression problem for $R A$ and $R b$. Let x^{\prime} be the solution. This can be done efficiently because R reduces the size and $R A$ and $R b$ have $d \log d$ rows. Then we have

$$
\left\|A x^{\prime}-b\right\|_{1} \leqslant\left\|R A x^{\prime}-R b\right\|_{1} \leqslant\left\|R A x^{*}-R b\right\|_{1} \leqslant d \log d\left\|A x^{*}-b\right\|_{1},
$$

where x^{*} is the optimal solution to the original problem.

This gives us a poly (d)-approximation to the ℓ_{1} regression problem.

1.5.2 Computing a well-conditioned basis

The algorithm is as follows:

1. $R A$.
2. Compute W such that $R A W$ is orthonormal (in the ℓ_{2} sense)
3. Output $U=A W$.

Then $U=A W$ will be a well-conditioned basis. To see this note that

$$
\begin{aligned}
\|A W x\|_{1} & \leqslant\|R A W\|_{1} \\
& \leqslant(d \log d)^{0.5}\|R A W x\|_{2} \\
& \leqslant(d \log d)^{0.5}\|x\|_{2} \\
& \leqslant(d \log d)^{0.5}\|x\|_{1},
\end{aligned}
$$

and

$$
\begin{aligned}
\|A W x\|_{1} & \geqslant \frac{1}{d \log d}\|R A W\|_{1} \\
& \geqslant \frac{1}{d \log d}\|R A W x\|_{2} \\
& \geqslant \frac{1}{d \log d}\|x\|_{2} \\
& \geqslant \frac{1}{d^{3 / 2} \log d}\|x\|_{1} .
\end{aligned}
$$

1.6 Proof of Sketching Theorem

What is a good sketching matrix? Subgaussian random variables are not good for sketching in ℓ_{1}. We should look for a family of heavy tailed distributions. One such distribution is the Cauchy distribution. One choice of R that can be shown to work is as follows: the entries of R are i.i.d. Cauchy random variables scaled by $(d \log d)^{-1}$.

Definition (Cauchy Random Variable). A random variable X is Cauchy distributed if it has the density function

$$
f(x)=\frac{1}{\pi\left(1+x^{2}\right)} .
$$

This distribution has heavy tails, and is symmetric about the origin. Furthermore its expectation is undefined and the variance is infinite.

Recall that Gaussians are 2-stable. For Cauchy random variables it can be shown that they're 1 -stable.

Fact 1 (Cauchy is 1 -stable). X_{i} 's are independent Cauchy random variables, then for any $a \in \mathbb{R}^{n}$,

$$
\sum_{i=1}^{n} a_{i} X_{i} \sim\left\|\sum_{i=1}^{n} a_{i}\right\|_{1} \cdot Z,
$$

where Z is a Cauchy random variable.
Now since Cauchy is 1 -stable, we know that for every row r in R

$$
\langle r, A x\rangle=\|A x\|_{1} \cdot Z /(d \log d),
$$

where Z is a Cauchy random variable. Then

$$
R A x=\left(\|A x\|_{1} \cdot Z_{1}, \ldots,\|A x\|_{1} \cdot Z_{d \log d}\right) /(d \log d)
$$

where $Z_{1}, \ldots, Z_{d \log d}$ are i.i.d. Cauchy random variables. Now we can write

$$
\|R A x\|_{1}=\|A x\|_{1} \sum_{j}\left|Z_{j}\right| /(d \log d)
$$

where $\left|Z_{j}\right|$'s are i.i.d. half-Cauchy random variables. We are interested in proving upper and lower bounds on this quantity.

In order to prove lower bounds, let $X_{j}=\mathbb{1}\left[\left|Z_{j}\right|>0.2\right]$, then $X_{j}^{\prime} s$ are i.i.d. Bernoulli random variables with $\mathbb{P}\left[X_{j}=1\right] \geqslant 0.01$. Then we can apply a Chernoff's bound

$$
\mathbb{P}\left[\sum_{j} X_{j} \leqslant 0.01 d \log d\right] \leqslant \exp (-\Theta(d \log d))
$$

Therefore,

$$
\sum_{j}\left|Z_{j}\right|=\Omega(d \log d)
$$

with probability $1-\exp (-d \log d)$.
The other direction is more difficult, since $\sum_{j}\left|Z_{j}\right|$ is heavy-tailed.
Please refer to the next lecture for the rest of the proof.

