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1 KVW protocol.

In this section, we study the KVW algorithm that works in the arbitrary partition model. This
protocol also overcomes issues with real number communication, large bit complexity (due to sending
coresets) and heavy computation (due to computing SVDs) that we run into in the FSS protocol.
As the theme of this course, the protocol is inspired by sketching algorithms we saw earlier in class.
Let Sbea g x n sketching matrix from a random matrix family such as i.i.d Gaussian, CountSketch,...
Recall from the low rank approximation lectures that there is a good (1 + ¢)-low rank approximation
inside the row span of SA. Naturally, we would like to design our protocol according to the following
framework:

1. Since S can be pseudorandomly generated from a small seed (O(logn)), Coordinator sends
the small seed of S to all servers.

2. Server t computes SA? and sends it to Coordinator.
3. Coordinator adds things up to get SA =37 ;| SA!, then sends SA back to servers.

4. If somehow servers knew the good low rank approximation W inside SA, server t could just
output the projection of A’ onto W.

However, the catch here lies on the last step. Naively, server ¢ can just output the projection of A’
onto the row span of SA, but this leads to the resulting matrix being rank % > k. Another simple
solution would be for each server ¢ to communicate the projection of A* onto rowsp(SA) to the
coordinator who could find the good k-dimentional subspace, but communication now will depend
on n.

To fix this, let Y SA be a rank-k matrix with orthonormal rows, then we can find the good rank-k
approximation inside SA by solving the following least square regression:

min HA — A(YSA)T (YSA)H2
rank-kY F
= i, [4-aAT A,
= raglgilx HA —A (S’A)T)('(,S'A)Hj7 (change of variable X = YY)

Fortunately, we have seen this kind of problem in the low rank approximation lectures, so we can
apply affine embeddings in both left and right sides to reduce the problem’s dimensionality while
preserving Frobenius norm.

Claim 1. Let 77 and T3 be (1 + ¢) affine embeddings. Solving the following optimization problem
(which is tiny and has a closed-form solution),

i [T4T: = TA (54" XS
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gives us an (1 + O(e))-approximation solution.
Proof. Let

X* = arg min HA -A (SA)TX(SA>H

2
rank-k X F
~ 2
X = argmin HTlATz —T1A(SA)" X (SA)D|
rank-k X F

We have:

|a—a(sa) X(SA)HF <(1+e)||na-masa)" X(SA)HF (affine embedding for T})
2 HTIATQ ~TiA (SA)T)?(SA)TQHF (affine embedding for Tb)
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Put everything together, we have the KVW Protocol as follows:

1. Each server i computes SA’ and sends it to the coordinator.
The coordinator computes SA = Y5 | SA" and sends it to servers.

Each server ¢ computes TlAi(SA)T and T} A*Ty, then sends them back to the coordinator.

By linearity, the coordinator computes T3 A(SA)T and Ty AT, then broadcasts them to servers.

o N

Each server independently solves the sketched optimization problem and outputs k directions
of XSA.

dk
It is not hard to see that step 1 and 2 take O (S) communication words due to exchanging
€

k
information about SA. The remaining steps involve communicating matrices of size poly <) X
€
k k
poly <>, thus resulting in communication cost of s.poly <) Overall, the KVW protocol takes
€ €
dk k
0] <S> + s.poly (> words of communication.
€ €

2 BWZ protocol.

In [1], an 2 (sdk) words of communication lower bound is shown, while the KVW algorithm takes

sd
@) < words of communications. In this section, we present the BWZ protocol which drives the
€

communication cost to O (sdk) + s.poly <> The main idea is to use projection-cost preserving
€

sketches.



2.1 PCP sketches and BWZ protocol.

k
Definition 1. Let A be an n x d matrix. A random matrix S of size — X n is a projection-cost

preserving sketch if there exists a scalar ¢ > 0 such that for all k—dimensional projection matrices
P, the following inequality holds:

IA( = P)llF < ISAUI ~P)llp+c< (1+e)|AI - P)|F

The construction of PCP sketches and proof of correctness can be found in [2].
Let

P = argmin ||SA (I — P)H%
P* = argmin ||A (I — P)|%
Then,
HA (I - 15) Hi < HSA (I - ﬁ) Hi + ¢ (PCP guarantee for S)
< ||SA(I — P*)|% 4+ ¢ (P is the minimizer)

<(1+4¢e)|A(I - P*)|% (PCP guarantee for )
= (1+¢)||A—Apl|% (A is the best rank-k approximation of A)

Thus, the definition of PCP sketches gives us the following useful implication.
1|2

Implication. HA (I - P) HF <(14¢)||A— A5

Moreover,

~\ (|12
|ISA — (SA)k||2F +c= HSA (I - P) HF +c¢ ((SA)g is the best rank-k approximation of SA)

~\ (|2
<(1+4¢) HA (I - P)HF (PCP guarantee for S)
< (14¢)?||A— Ag|% (implication)
= (1+0() |14 - Axl[7

Therefore, we get another useful bound that we will need for BWZ analysis. Corollary. ||SA — (SA)|/5+
¢ < (1+0(9) |4~ Ak
By implication bound, one can obtain a really simple protocol for distributed low rank approximation.

1. Each server i computes SA’ and sends it to the coordinator.

2. The coordinator computes SA = Y7 ; SA! and sends it to servers.

3. Each server independently solves the sketched optimization problem:
P =argmin|[SA (I — P)|%

and output P.



As the KVW protocol, the bottleneck is to communicate information about matrix S A which results

2
we encoguntered when naively designing a protocol in the arbitrary partition model by exchanging
the projection of A! onto the row span of (SA) to the coordinator. Here, instead of using regular
sketching matrices, we apply PCP sketches from the right of SA to further reduce the dimentionality
while preserving projection cost. The complete BWZ protocol is as follows:

sdk
in O () words of communications. Fortunately, this problem is more or less similar to one that

k k

1. Let S and T be a — x n and a d X —; projection-cost preserving sketch respectively.
€ €

2. Server t sends SA'T to the coordinator.

3. Coordinator computes SAT = >7_; SA'T, then sends it back to servers.
k

4. Each server computes the — X k matrix U of the top k left singular vectors of SAT'
€

5. Server t sends UTSA* to the coordinator.

6. Coordinator returns U7 SA = 325, UTSA! as the final output.

2.2 Analysis of BWZ protocol.

Let W be the row span of UTSA, and P be the projection matrix onto W. We would like to show:
1A= AP|E < (14 0(e)) |4 = Axl%

First, note that SAP is the projection of SA onto the row span of UTSA, and UUTSA is obviously
inside the row span of UTSA. Hence, by Pythagorean theorem:

|54~ UUTSAHjm = |SA ~ SAP|% + |[sAP - UUTSA’]fm
> ||SA - SAP|
Recall that U is the top k left singular vectors of SAT. Thus,
vut = arg min |(I — P)SAT|%

projection onto k-dim space P

Applying the implication bound with respect to matrix SA and PCP sketch T, we have:
T 2 2
|(1—vu”) SAHF <(1+¢)|ISA— (SA)|>
Combining the two inequalities above, we have:
ISA — SAP|| < (1+¢) [SA — (SA) 7
Finally, we use the PCP guarantee with respect to matrix A and PCP sketch S to get:

|A— AP||3. < ||SA— SAP|% 4+ ¢ (PCP guarantee for S)
<(1+¢)||SA—(SA)|% (proved above)
<(14e)(1+0())||A- Ak“% (corollary of the implication bound)
=(1+0() A~ 47 =



3 [(; regression.

So far, we have seen {5 regression in class. One problem with ¢s regression is that the cost function
is sensitive to outliers in the dataset. In this section, we study ¢; regression, which is also called
robust regression as the objective function we want to minimize is

lAz = blly = > [bi — (Au, 2))|

Unlike ¢y regression, one cannot obtain a closed-form solution for ¢; norm. However, the problem
can be modeled as a linear program. More specifically, let A be an n x d matrix. We introduce new
variables at and a~, each of which is an n x 1 vector, and we will solve the following LP.

min(1,1,1,...,1).(a™ +a7)
subject to Az +aT —a” =b,
at,a” >0

Hence, ¢; regression problem can be solved optimally in poly(nd) time via any polynomial time LP
solver. In the context of big data, we would like algorithms that achieve better runtime by using
sketching methods.
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