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1 Motivation

In many instances, we have a large amount of data, and we want to extract information from it.
For example, when dealing with internet traffic logs, financial data, etc. In these instances, naive
algorithms are not efficient enough, and we usually want to design algorithms that are nearly linear
time or sublinear in the size of the data. As we will see in this course, in many instances, we can
achieve this by using randomization.

2 Linear Regression

The first problem we consider is linear regression.

Linear Regression. A statistical model to study linear dependencies between variables in the
presence of noise.

One example of a linear relationship between two variables is the following:

Example 1 (Ohm’s Law). One example of this is Ohm’s law, which states that the current
through a conductor between two points is directly proportional to the voltage across the two points.
Mathematically, we can write this as V = IR, where V is the voltage, I is the current, and R is the
resistance. We can also write this as I = V/R. This is a linear relationship between I and V .

We can formalize the linear regression problem as follows:

Standard Linear Regression. Let b denote the measured variable, and ai, . . . , ad be a set of
predictor variables. We assume that the relationship between b and ai is linear, i.e.

b = x0 + a1x1 + · · · + adxd + ε,

where ε is a random variable representing the noise, and the goal is to learn x0, . . . , xd. Note that
here we may assume that x0 = 0 without loss of generality, as we may always add a new predictor
variable a0 that is always 1.

Now let’s assume we have n observations of b and ai’s. In this setting it is convenient to consider
the regression problem in matrix form.
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Linear Regression Matrix Form. Suppose n observations of the standard linear regression
model are given. Namely, we have access to variables b ∈ Rn and A ∈ Rn×d, where Ai,j is the j-th
predictor variable of the i-th observation. Our goal is to find the d-dimensional vector x∗ such that
Ax∗ is close to b.

Specifically, we are interested in the over constrained setting where n ≫ d. In this setting, we have
more observations than the number of variables, and we want to find the best fit. In this setting,
we can’t find a solution that satisfies all the equations, so we want to find a solution that minimizes
the error.

2.1 Least Squares Method

Probably the most common way to measure closeness is the least squares model. Here what we are
trying to do is find x∗ that minimizes the sum of the squares of the errors. We can write this as
follows:

∥Ax − b∥2
2 =

n∑
i=1

(⟨Ai,∗x⟩ − bi)2,

where Ai,∗ is the i-th row of A. The least squares estimator has desirable statistical properties. For
example, one can show that the least squares estimator is a maximum likelihood estimator.

2.2 Geometric Interpretation of Least Squares

We want to find an x∗ such that Ax∗ is close to b, i.e. x∗ minimizes ∥Ax − b∥2. The product Ax is a
linear combination of the columns of A with coefficients xi. Therefore, we can write Ax as follows:

Ax = A∗,1x1 + · · · + A∗,dxd,

where A∗,i is the i-th column of A. This forms a d-dimensional subspace of Rn. The problem is
equivalent to computing the point of the column space of A that is closest to b, in ℓ2 norm.

2.3 Solving Least Squares Regression via the Normal Equations

Our goal is to find the solution x to minx∥Ax − b∥2. We can write b as the sum of a member of the
column space of A, and a vector orthogonal to the column space of A.

b = Ax′ + b′, where b′ is orthogonal to the columns of A.

Now by the Pythagorean theorem we can write,

∥Ax − b∥2
2 = ∥Ax − Ax′ − b′∥2

2 = ∥A(x − x′) − b′∥2
2 = ∥A(x − x′)∥2

2 + ∥b′∥2
2 (1)

Claim 1. x is an optimal solution if and only if,

AT (Ax − b) = AT (Ax − Ax′) = 0.
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Proof. First note that AT (Ax − b) = AT (Ax − Ax′). This is because b′ is orthogonal to the columns
of A, and b = Ax′ + b′. Now note that by Equation 1, we have that

arg min
x

∥Ax − b∥2
2 = arg min

x
∥A(x − x′)∥2

2

Therefore, x is an optimal solution iff A(x − x′) = 0. It is easy to see if this is true then
AT (Ax − Ax′) = 0. It remains to show that if AT (Ax − Ax′) = 0, then A(x − x′) = 0. To see this,
note that

AT (Ax − Ax′) = 0 =⇒ (x − x′)T AT A(x − x′) = 0 =⇒ ∥A(x − x′)∥2
2 = 0 =⇒ A(x − x′) = 0.

■

Therefore any optimal solution x must satisfy the normal equations.

Definition (Normal Equations). For a linear regression problem and variables A ∈ Rn×d, and
b ∈ Rn, we say x ∈ Rd satisfies the normal equations iff AT Ax = AT b.

If the columns of A are independent then we can write the solution as:

x = (AT A)−1AT b

What can we do if the columns of A are not independent? In that case the solution is not unique:
addition with any member of the kernel would still be a solution. We can use the psuedo-inverse to
find x in this case.

2.4 Moore-Penrose Pseudo-inverse

Theorem 1 (Singular Value Decomposition (SVD)). Any matrix A can be written as

A = U · Σ · V T ,

where,

• U has orthonormal columns,

• Σ is diagonal with non-increasing non-negative entries down the diagonal,

• V has orthonormal columns or equivalently V T has orthonormal rows.

Definition (Pseudo-inverse). The pseudo-inverse of A is defined as

A− = V Σ−1UT ,

where Σ−1 is the diagonal matrix with the reciprocals of the diagonal entries of Σ. The i-th diagonal
entry is equal to 1/Σii if Σii ̸= 0 and 0 otherwise.

Theorem 2 (Finding an Optimal Solution to Least Squares Regression). Consider a least squares
regression problem with variables A ∈ Rn×d, and b ∈ Rn. Let x = A−b. Then x is an optimal
solution to the problem.
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Proof. We want to show that x satisfies the normal equations. Using Theorem 1, we can write the
following:

A = UΣV T

AT = V ΣT UT

A− = V Σ−1UT

Now let’s substitute, and see if x satisfies the normal equations, i.e. AT Ax = AT b.

AT Ax = AT AA−b

= V ΣT UT UΣV T V Σ−1UT b

= V ΣT ΣΣ−1UT b

= V ΣUT b

= AT b,

where we used the fact that U is orthonormal, V is orthonormal. Moreover, and ΣT ΣΣ−1 = Σ since
Σ is diagonal. Therefore, we have that AT Ax = AT b, as desired. ■

Theorem 3 (Characterizing the Set of Optimal Solutions). Any optimal solution x has the form
A−b + (I − V ′V ′T )z where V ′T corresponds to the rows i of V T for which Σi,i>0. Moreover, among
all solutions A−b is the one with the smallest norm.

Proof. Suppose Σ has r non-zero entries. We can write A as follows:

A = UΣ
[

V ′T

V ′′T

]
,

where V ′T is r × d and V ′′T is the rest of the rows of V T . Since V has orthonormal columns, we
have that I = PV ′ + PV ′′ = V ′V ′T + V ′′V ′′T , where PV ′ is the projection onto the column space
of V ′. Therefore, I − V ′V ′T = V ′′V ′′T . We need to show that x satisfies the normal equations, i.e.
AT Ax = AT b. To see this, note that

AT Ax − AT b = AT A(A−b + (I − V ′V ′T )z) − AT b

= AT AA−b + AT A(I − V ′V ′T )z − AT b

= AT AV ′′V ′′T z

= 0.

The last equality is because AV ′′ = 0, since, A = UΣ
[

V ′T

V ′′T

]
, and V ′′T corresponds to the rows of

V T for which Σi,i = 0. Therefere, any point of the form A−b + (I − V ′V ′T )z satisfies the normal
equations. We need to show that any optimal solution has this form. To see this, note that this set
is a d − rank(A)-dimensional affine space so it spans all optimal solutions.

It remains to show that A−b is the solution with the smallest norm. To see this, note that A−b is in
the column span of V ′. This is because,

A−b =
[
V ′V ′′

] [
Σ′−1 0

0 0

]
UT b
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So all of the terms affected by V ′′ are zero. Therefore A−b is in the column span of V ′. By the
Pythagorean theorem, we have that

∥A−b + (I − V ′V ′T )z∥2
2 = ∥A−b∥2

2 + ∥(I − V ′V ′T )z∥2
2 ≥ ∥A−b∥2

2,

as desired. ■

2.5 Time Complexity

We need to compute x = A−b. Naively, this takes O(nd2) time. If we use fast matrix multiplication
results we can reduce this to get O(nd1.376) time. This would still be slow if we have a large number
of observations n. Here’s where sketching comes in.

2.6 Sketching to Solve Least Squares Regression

Our goal is to find an approximate solution x to minx∥Ax − b∥2, i.e. we want to find an x such that

∥Ax′ − b∥2 ≤ (1 + ε)∥Ax∗ − b∥2,

with high probability.

Sketching. Consider a k × n matrix S that is fat and wide (k ≪ n). The idea is to instead solve
the problem under a random S, and hope that the solution would still be an approximate minimizer
and it would save us time by reducing the time complexity to O(kd2). We can write the problem as
follows:

min
x

∥SAx − Sb∥2

Now the question is what choice of S works for us. First, let’s consider S to be a random matrix
with independent Gaussian entries. We can show that this works for us. Let k = O( d

ε2 ), and assume

Si,j
i.i.d.∼ N (0, 1/k),

where N (0, 1/k) is the normal distribution with mean 0 and variance 1/k.

Theorem 4 (Subspcae Embedding). For any fixed d-dimensional subspace, i.e. the column space
of an n × d matrix A, we have that with high probability over the choice of S,

∀x : ∥SAx∥2 ≤ (1 + ε)∥Ax∥2

Note that the order of the quantifiers here is important. We want to show that with high probability
for any x the inequality holds. We don’t want to show that for each x the inequality holds with
high probability.

Proof. We can simplify the problem.
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Claim 2. Without loss of generality, we may assume that the columns of A are orthonormal, and
that x is norm 1.

This is because we can instead pick another A′ where the columns of A′ form an orthonormal basis
for the column space of A. The second part is because we can scale both sides by ∥x∥2.

Claim 3. If A’s columns are orthonormal, then SA itself is a k × d matrix of i.i.d. N (0, 1/k)
Gaussian entries.

We use Facts 1 and 2. First we know that each row of SA is independent, as they use different
random bits. Second, we know that each row of SA has the following form[

⟨g, A1⟩ · · · ⟨g, Ad⟩
]

From the facts below we know that each entry is independent and is distributed as N (0, 1/k).
Therefore, we have that SA is a k × d matrix of i.i.d. N (0, 1/k) Gaussian entries.

Please refer to the next lecture note for the rest of the proof. ■

Fact 1. For any two independent random variables X and Y drawn from N(0, a2), and N(0, b2) we
have that X + Y is distributed as N(0, a2 + b2).

Fact 2. If u and v are vectors with ⟨u, v⟩ = 0, then ⟨g, u⟩ and ⟨g, v⟩ are independent, where g is a
vector of i.i.d. N(0, 1/k) Gaussian entries. Moreover, this property holds for set of orthogonal set of
vectors.
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