
15-851 Algorithms for Big Data — Spring 2024

Problem Set 3
Due: Thursday, March 21, before class

Please see the following link for collaboration and other homework policies:
http://www.cs.cmu.edu/afs/cs/user/dwoodruf/www/teaching/15851-spring24/grading.

pdf

Problem 1: Embedding ℓp into ℓr (25 points)

1. We first consider each coordinate of Ty. For (Ty)i from the property of p-stable random
variable we have (Ty)i =

∑
j Tijyi ∼ ∥y∥p ·C, where C is a p-stable random variable. Hence

we have that

E[|(Ty)i|r] = E[∥y∥rp · |C|r] = ∥y∥rp · E[|C|r] = ∥y∥rp
∫ ∞

x=0

Θ

(
|x|r

1 + |x|p+1

)
dx = Θ(1) · ∥y∥rp .

To get this, notice that∫ ∞

x=0

|x|r

1 + |x|p+1
dx =

∫ 1

x=0

|x|r

1 + |x|p+1
dx+

∫ ∞

x=1

|x|r

1 + |x|p+1
dx

≤
∫ 1

x=0

|x|r

1
dx+

∫ ∞

x=1

|x|r

|x|p+1
dx = Θ(1) .

From the linearity of the expectation we have that

E[∥Ty∥rr] = E

[∑
i

|(Ty)i|r
]
=
∑
i

E [|(Ty)i|r] = Θ(m · ∥y∥rp) .

2. From part 1, we have that for every i, E|(Ty)i|r =
αr
p,r

αr
p,r·m

∥y∥rp = 1
m
∥y∥rp. To get

concentration, we pick an r′ ∈ (r, p) and consider the r′/r-moment of (Ty)ri . Similarly, we

have that E[|(Ty)|r′i ] =
βp,r,r′

mr′/r ∥y∥r
′

p is bounded, where βp,r,r′ is a constant depending on p, r, r′

only. Let S =
∑

i |(Ty)i|r and we have that E[S] = ∥y∥rp. Consider the (r/r′)-th moment of
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S. We then have

E
[
(S − E[S])r

′/r
]
= E

(∑
i

(
|(Ty)i|r −

1

m
∥y∥rp

))r′/r


≤ 2

(∑
i

E

[
|(Ty)i|r −

1

m
∥y∥rp|

]r′/r)
(Fact 2)

≤ 2r
′/r+1

(∑
i

E|(Ty)i|r
′

)
(Fact 1)

≤ C

(∑
i

1

mr′/r
∥y∥r′p

)
= C∥y∥r′p /mr′/r−1 ,

where C is a constant that depends only on r, r′, and p. By Markov’s inequality, we have
that

Pr [|S − E[S]| ≥ εE[S]] ≤ Pr
[
|S − E[S]|r′/r ≥ (εE[S])r

′/r
]

≤
E
[
(S − E[S])r

′/r
]

εr′/r∥y∥r′p

≤
Cr′/r

εr′/rmr′/r−1
.

Hence, we can see that when m = Ω(1/ε
r′

r′−r ) = 1/εΩ(1), |∥Ty∥r − ∥y∥p| ≤ ε∥y∥p holds with
large constant probability.

3. We first show that for every x ∈ Rd, ∥Ty∥rr ≥ (1 − ε)∥y∥rp holds with probability at
least 1 − exp(−d log(nd)). Recall that we have that E|(Ty)i|r = 1

m
∥y∥rp for every i. Fix

k = 1/εO(1). Let

si = |(Ty)(i−1)k+1|r + |(Ty)(i−1)k+2|r + · · ·+ |(Ty)ik|r (1 ≤ i ≤ m/k) .

We then have ∥Ty∥rr =
∑

i si. Similar to (1), one can show that for each i, with probability
at least 1−O(ε), ∣∣∣∣si − k

m
∥y∥rp

∣∣∣∣ ≤ ε
k

m
∥y∥rp (1)

By a Chernoff bound, with probability at least 1−exp(−d log(nd)), at least a (1−ε)-fraction
of the si satisfy (1). Conditioned on this event, it holds that

∥Ty∥rr =
∑
i

si ≥
m

k
(1− ε)

k

m
∥y∥rp = (1− ε)∥y∥rp ,
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which is what we need. The next is a standard net-argument. Let S = {Ax : x ∈
Rd, ∥Ax∥p = 1} be the unit ℓp-ball and N be a γ-net with γ = poly(1/nd) under the ℓp
distance. It is a standard fact that the size of N can be (nd)O(d). By a union bound, we
have that ∥TAx∥r ≥ (1− ε)∥Ax∥p = (1− ε) for all Ax ∈ N simultaneously with probability
at least 9/10. From the fact the problem gives, we have that with probability at least 9/10,
∥TAx∥p ≤ poly(nd)∥Ax∥p for all x ∈ Rd. Conditioned on these events, we then have for all
x ∈ Rd,

∥TAx∥r ≤ m1/r−1/p∥TAx∥p ≤ poly(nd)∥Ax∥p .
Then, for each y = Ax ∈ S, we can choose a y1 such that ∥y − y1∥p ≤ γ. Suppose that
y1 = Ax1, then we have

∥TAx∥r ≥ ∥TAx1∥r − ∥TA(x− x1)∥r ≥ (1− ε)− γ · (poly(nd)) = 1−O(ε)

given the condition 1
ε
< n. Rescaling ε, we obtain that ∥TAx∥rr ≥ (1−ε)∥Ax∥rp for all x ∈ Rd

simultaneously.
4. Let x⋆ ∈ Rd be the solution to minx∈Rd ∥Ax − b∥r. Applying part 2 on the vector

Ax⋆ − b we have that with high constant probability

∥T (Ax⋆ − b)∥r ≤ (1 + ε)∥Ax⋆ − b∥p .

From this we can get that

min
x∈Rd

∥T (Ax− b)∥r ≤ (1 + ε) min
x∈Rd

∥Ax− b∥p .

Suppose that x′ ∈ Rd is the solution to minx∈Rd ∥T (Ax− b)∥r, It follows from part 3 that

∥Ax′ − b∥p ≤
1

1− ε
∥T (Ax′ − b)∥r ≤ (1 +O(ε)) min

x∈Rd
∥Ax− b∥p .

Problem 2: Communication Complexity and Streaming (25 points)

1. Let us consider the uniform distribution on σ. Let M be Alice’s message to Bob.
Similarly to what we did in the lecture, we have for at least one choice of Alice’s random
coins, the message |M | ≥ H(M) ≥ I(σ;M). Hence, we only need to bound I(σ;M). Let σi

denote the i-th bit of the list σ(1), σ(2), ..., σ(n). By the chain rule, we have that

I(σ;M) =

n logn∑
i=1

I(σi;M | σ<i)

=
∑
i

(H(σi | σ<i)−H(σi | M,σ<i))

≥
∑
i

(H(σi | σ<i)−H(σi | M))

= H(σ)−
∑
i

(H(σi | M)) .
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Using Stirling’s approximation, we have that H(σ) = log n! ≥ n log(n/e). We next
consider the H(σi | M). Since M is a randomized protocol that succeeds on every pair of
inputs (σ, i) with probability at least 99/100, and M does not depend on i, it follows that
from M Bob can predict σi for any given i with probability at least 99/100. By Fano’s
inequality, we have that H(σi | M) ≥ H(1/100). Putting these two things we have that
I(σ;M) ≥ n log(n/e)−H(1/100) · n log n = Ω(n log n), which is what we need.

2. We will perform a reduction from the problem in (1) with size n/2. Given a per-
mutation σ, Alice creates a perfect matching from [n/2] to [n/2] where the i-th left vertex
connects to the σ(i)-th right vertex. Let L and R denote the two parts of the vertex set
V , each of size n/2. Suppose that there is a streaming algorithm A that solves the graph
connectivity problem. Given the input of the permutation σ in the problem in (1), Alice
adds the matching edges to A and sends the memory of A to Bob.

Suppose the input of the problem in (1) to Bob is i, which corresponds to the ℓ-th bit
in σ(j). Bob then adds the edges to the graph as follows. Let S ⊆ R denote the subset of
vertices whose ℓ-th bit is equal to 0. Bob then creates edges that consist of a spanning tree
on (L \ {j}) ∪ S and adds them to A. We can ensure the edges of the spanning tree are
disjoint from the matching edges by including a new vertex w and including the edges to w.

Let us consider the underlying graph of A. Observe that since the vertices in L \ {j} are
connected. Since we placed a perfect matching from L to R, any vertex u is connected to
any other vertex except possibly to j or σ(j). Now, if the σ(j)-th right vertex has its ℓ-th
bit equal to 0, then σ(j) is connected to S, and hence to L \ {j}. It follows that the graph is
connected. On the other hand, if the σ(j)-th right vertex has its ℓ-th bit equal to 1, then the
edge from the j-th left vertex to the σ(j)-th right vertex is isolated. In this case the graph is
disconnected. From the above discussion, we get that if we can solve the graph connectivity
problem, we can solve the permutation problem in (1), which results in a Ω(n log n) bits of
space lower bound for the graph connectivity problem.
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