15-851 Algorithms for Big Data — Spring 2024

Problem Set 2

Due: Thursday, February 22, 11:59pm

Please see the following link for collaboration and other homework policies: http://www.cs.cmu.edu/afs/cs/user/dwoodruf/www/teaching/15851-spring24/grading.pdf

Problem 1 (1) Let A = UR where U is an orthonormal basis of A. Then we have

$$\sup_{x} \frac{\|Ax\|_{\infty}^{2}}{\|Ax\|_{2}^{2}} = \sup_{x} \frac{\|URx\|_{\infty}^{2}}{\|URx\|_{2}^{2}} = \sup_{x:\|Rx\|_{2}=1} \frac{\|URx\|_{\infty}^{2}}{\|URx\|_{2}^{2}} = \sup_{y:\|y\|_{2}=1} \|Uy\|_{\infty}^{2},$$

notice that for each $i \in [n]$, we have $\langle U_i, y \rangle^2 \leq \|U_i\|_2^2 = \ell_i(U) = \ell_i(A)$, which means that $\mu(A) \geq \sup_x \frac{\|Ax\|_\infty^2}{\|Ax\|_2^2}$. On the other hand, let $j = \operatorname{argmax}_i \ell_i(U)$, then let $y^T = U_i / \|U_i\|_2$, we have $\|Uy\|_\infty^2 \geq \ell_j(U)$, from which we have that $\mu(A) \leq \sup_x \frac{\|Ax\|_\infty^2}{\|Ax\|_2^2}$.

(2) Since we have that $\sum_{i} \ell_{i}(A) = d$, we can get that $\max_{i} \ell_{i}(A) \geq (\sum_{i} \ell_{i}(A)) / n = d/n$. Consider the example where we stack n/d $d \times d$ identity matrix I_{d} to form the matrix A. That is,

$$A = \begin{bmatrix} I_d \\ I_d \\ \vdots \\ I_d \end{bmatrix}$$

We can see that A has orthogonal columns, after normalization we have that each row of A has leverage score d/n.

(3) Suppose that A is a matrix that satisfies the condition in (2). Then we construct the matrix B where $B_1 = A_1$ and $B_i = -A_i$ for $i \ge 2$. Then we have that for every x, $||Ax||_2 = ||Bx||_2$ and $||Ax||_{\infty} = ||Bx||_{\infty}$, which means that $\mu(A) = \mu(B) = d/n$.

We next consider the matrix $C = [A \ B]$. Note that from part (1) we immediately have $\mu(C) \le 1$ as $||Ax||_{\infty} \le ||Ax||_2$ for every $x \in \mathbb{R}^d$. On the other hand, let x be the vector has the form (y, -y) where $A_1^T y \ne 0$. We then have $(Cx)_1 \ne 0$ while $(Cx)_i = 0$ for $i \ge 2$. This means that $\mu(C) > 1$, from which we have that $\mu(C) = 1$.

4) For a matrix C where C has orthonormal columns, note that we have that $\mu(C) = \max_i \|C_i\|_2^2$. Back to our problem, from the assumption we have that all of the matrices A, B, C have orthonormal columns, which means $\mu(A) = \max_i \|A_i\|_2^2$, $\mu(B) = \max_i \|B_i\|_2^2$, $\mu(C) = \max_i \|C_i\|_2^2$. Since C = [A B], we have that

$$\max\left(\max_{i} \|A_{i}\|_{2}^{2}, \max_{i} \|B_{i}\|_{2}^{2}\right) \leq \max_{i} \|C_{i}\|_{2}^{2} \leq \max_{i} \|A_{i}\|_{2}^{2} + \max_{i} \|B_{i}\|_{2}^{2}$$

which means that

$$\max(\mu(A), \mu(B)) < \mu(C) < \mu(A) + \mu(B)$$

Problem 2 (1) Let $A = U\Sigma V$ be the singular value decomposition of A. Then we have that

$$AR = A(I - V_k V_k^T + V_k \Sigma_k^{-1} V_k^T)$$
$$= A - A_k + U_k V_k^T$$
$$= U\Sigma'V$$

where $\Sigma' = \begin{bmatrix} I_k \\ \Sigma_{-k} \end{bmatrix}$ is a diagonal matrix where all the diagonal entries are O(1) (from the assumption we have that $\sigma_{k+1} = O(1)$). From this we have that

$$||ARx||_2 = \Theta(1)||x||_2$$

which is what we need.

(2) Let $A = U\Sigma V^T$. Then we have for a $x \in \mathbb{R}^n$ where $||x||_2 = 1$

$$||ARx||_2^2 = ||U\Sigma V^T Rx||_2^2 = ||\Sigma V^T Rx||_2^2 = \sum_i (\Sigma V^T Rx)_i^2$$

Let $x = \alpha z + \beta w$, where $\langle z, w \rangle = 0$, $||w||_2 = 1$, and $\alpha^2 + \beta^2 = 1$. Then, for i = 1, we have

$$(\Sigma V^T R x)_1 = \sigma_1(A) v_1^T (I - z z^T) \beta w + \sigma_1(A) \frac{1}{\lambda} v_1^T z z^T z$$

from the assumption that $\langle v_1, z \rangle \ge 1 - 1/(10\sigma_1(A)^2)$ and $||a - b||_2^2 = ||a||_2^2 + ||b||_2^2 - 2\langle a, b \rangle$ we have that

$$||v_1^T - \langle v_1, z \rangle z^T||_2^2 = ||v_1||_2^2 + \langle v_1, z \rangle^2 ||z||_2^2 - 2\langle v_1, z \rangle^3 = O\left(\frac{1}{\sigma_1(A)^2}\right)$$

from which we have that

$$|(\Sigma V^T R x)_1| = |\sigma_1(A) v_1^T (I - z z^T) \beta w + \sigma_1(A) \frac{1}{\lambda} v_i^T z z^T z|$$

$$\leq O(1) \cdot |\beta| + \Theta(1) \cdot |\alpha|.$$

Next, for $i \geq 2$ we have

$$|(\Sigma V^T R x)_i| = \left| \sigma_i(A) v_i^T (I - z z^T) \beta w + \sigma_i(A) \frac{1}{\lambda} v_i^T z z^T z \right|$$

$$= \left| \sigma_i(A) v_i^T \beta w + \sigma_i(A) \frac{1}{\lambda} \langle v_i, z \rangle \alpha \right|$$

$$= \left| \sigma_i(A) \langle v_i, w \rangle \beta + \sigma_i(A) \frac{1}{\lambda} \langle v_i, z \rangle \alpha \right|$$

$$\leq \Theta(1) \cdot (|\langle v_i, w \rangle| |\beta| + |\langle v_i, z \rangle| |\alpha|)$$

Using the fact that $(a+b)^2 \le 2(a^2+b^2)$ we have

$$||ARx||_2^2 = \sum_i (\Sigma V^T Rx)_i^2$$

$$\leq O(1) \cdot \beta^2 + \Theta(1) \cdot \alpha^2 + \sum_{i \geq 2} \Theta(1) \cdot (\langle v_i, w \rangle^2 \beta^2 + \langle v_i, z \rangle^2 \alpha^2)$$

$$= \Theta(1).$$

We next consider the other direction. If $|\beta| \leq 2|\alpha|$, from the above we have

$$|(\Sigma V^T R x)_1| = |\sigma_1(A) v_1^T (I - z z^T) \beta w + \sigma_1(A) \frac{1}{\lambda} v_i^T z z^T z|$$

$$\geq 0.9 \cdot |\alpha| - O(1) \cdot |\beta| \geq \Theta(1).$$

since $\alpha^2 + \beta^2 = 1$, and on the other case $|\beta| > 2|\alpha|$, from $\sum_i \langle v_i, z \rangle^2 = \sum_i \langle v_i, w \rangle^2 = 1$ and $|\langle v_1, z \rangle| > 1 - O\left(\frac{1}{\sigma_1(A)^2}\right)$, $|\langle v_1, w \rangle| \le O\left(\frac{1}{\sigma_1(A)}\right)$ we have that

$$\sum_{i} |(\Sigma V^{T} R x)_{i}|^{2} = \sum_{i} \left| \sigma_{i}(A) \langle v_{i}, w \rangle \beta + \sigma_{i}(A) \frac{1}{\lambda} \langle v_{i}, z \rangle \alpha \right|^{2} \ge \Theta(1) \cdot (\beta - \alpha)^{2} \ge \Theta(1) .$$

from which we can get that in both cases, $||ARx||_2^2 \ge \Theta(1)$, which is what we need.

(3) In each iteration of the gradient descent we need to compute $R^TA^T(b - ARx_i)$. Since we have $R = I - zz^T + \frac{1}{\lambda}zz^T$, which means that we can compute Rx_i in O(n) time, $b - ARx_i$ in O(n) time, and then $A^T(b - ARx_i)$ in $\operatorname{nnz}(A)$ time and finally $R^T(A^T(b - ARx_i))$ in O(n) time, from which we can get that the per-iteration time we can have is $O(\operatorname{nnz}(A) + n)$.

Problem 3 We define OPT as

$$OPT = \min_{\text{rank} = k} ||A' - A||_F^2.$$

We first consider the following optimization problem,

$$\min_{U_1, \dots, U_k \in \mathbb{R}^n} \left\| \sum_{i=1}^k U_i \otimes V_i^* \otimes W_i^* - A \right\|_F^2,$$

it is equivalent to

$$\min_{U \in \mathbb{R}^{n \times k}} \left\| U Z_1 - A^1 \right\|_F^2,$$

where $Z_1 = ((V^*)^T \odot (W^*)^T)$. Notice that $\min_{U \in \mathbb{R}^{n \times k}} \|UZ_1 - A^1\|_F^2 = \text{OPT}$ and the optimum solution of U is U^* . Let $(R^1)^T \in \mathbb{R}^{s \times n^2}$ be a Count-Sketch matrix with $s = \text{poly}(k/\varepsilon)$.

We next consider the following optimization problem,

$$\min_{U \in \mathbb{R}^{n \times k}} \|U Z_1 R^1 - A^1 R^1\|_F^2.$$

Let $\widehat{U} \in \mathbb{R}^{n \times k}$ denote the optimal solution to the above optimization problem. Then $\widehat{U} = A^1 R^1 (Z_1 R^1)^{\dagger}$. From the class we know that with probability at least 0.99 R^1 is an affine embedding, which means that

$$\|\widehat{U}Z_1 - A^1\| \le (1+\varepsilon) \min_{U \in \mathbb{R}^{n \times k}} \|UZ_1 - A^1\|_F^2 = (1+\varepsilon)\text{OPT},$$

which implies

$$\left\| \sum_{i=1}^{k} \widehat{U}_{i} \otimes V_{i}^{*} \otimes W_{i}^{*} - A \right\|_{F}^{2} \leq (1+\varepsilon) \text{OPT}.$$

As our second step, we fix $\widehat{U} \in \mathbb{R}^{n \times k}$ and $W^* \in \mathbb{R}^{n \times k}$, and we convert tensor A into matrix A^2 . Let $Z_2 = ((\widehat{U})^T \odot (W^*)^T)$. We consider the following objective function,

$$\min_{V \in \mathbb{R}^{n \times k}} \|VZ_2 - A^2\|_F^2,$$

for which the optimal cost is at most $(1+\varepsilon)$ OPT. We sketch R^2 on the right of the objective function to obtain the new objective function,

$$\min_{V \in \mathbb{R}^{n \times k}} ||VZ_2R^2 - A_2R^2||_F^2.$$

Similarly we have that with probability at least 0.99 the solution $\hat{V} = A^2 R^2 (Z_2 R^2)^{\dagger}$ satisfies

$$\|\widehat{V}Z_2 - A^2\|_F^2 \le (1+\varepsilon) \min_{V \in \mathbb{R}^{n \times k}} \|VZ_2 - A^2\|_F^2 \le (1+\varepsilon)^2 \text{OPT},$$

which implies

$$\left\| \sum_{i=1}^k \widehat{U}_i \otimes \widehat{V}_i \otimes W_i^* - A \right\|_F^2 \le (1+\epsilon)^2 \text{OPT}.$$

As our third step, we fix the matrices $\widehat{U} \in \mathbb{R}^{n \times k}$ and $\widehat{V} \in \mathbb{R}^{n \times k}$ and let $Z_3 = ((\widehat{U})^T \odot (\widehat{V})^T)$. We consider the following objective function,

$$\min_{W \in \mathbb{R}^{n \times k}} ||WZ_3 - A^3||_F^2,$$

which has optimal cost at most $(1 + \epsilon)^2$ OPT. We sketch R^3 on the right of the objective function to obtain a new objective function,

$$\min_{W \in \mathbb{R}^{n \times k}} \|WZ_3R^3 - A^3R^3\|_F^2.$$

Similarly we have that with probability at least 0.99 we have the solution $\widehat{W} = A^3 R^3 (Z_3 R^3)^{\dagger}$ satisfies

$$\|\widehat{V}Z_2 - A^2\|_F^2 \le (1+\varepsilon) \min_{V \in \mathbb{R}^{n \times k}} \|VZ_2 - A^2\|_F^2 \le (1+\varepsilon)^3 \text{OPT},$$

which means that

$$\left\| \sum_{i=1}^{k} \widehat{U}_{i} \otimes \widehat{V}_{i} \otimes \widehat{W}_{i} - A \right\|_{F}^{2} \leq (1 + \epsilon)^{2} \text{OPT}.$$

Recall that we have $\widehat{U} \in \mathbb{R}^{n \times k}$, $\widehat{V} = A^2 R^2 (Z_2 R^2)^{\dagger}$, and $\widehat{W} = A^3 R^3 (Z_3 R^3)^{\dagger}$. This means that

$$\min_{X_1, X_2, X_3} \left\| \sum_{i=1}^k (A_1 R^1 X_1)_i \otimes (A_2 R^2 X_2)_i \otimes (A_3 R^3 X_3)_i - A \right\|_F^2 \le (1 + \epsilon)^3 \text{OPT}.$$

which is what we need.