
15-851 Algorithms for Big Data — Spring 2024

Problem Set 2
Due: Thursday, Februrary 22, 11:59pm

Please see the following link for collaboration and other homework policies:
http://www.cs.cmu.edu/afs/cs/user/dwoodruf/www/teaching/15851-spring24/grading.

pdf

Problem 1 (1) Let A = UR where U is an orthonormal basis of A. Then we have

sup
x

∥Ax∥2∞
∥Ax∥22

= sup
x

∥URx∥2∞
∥URx∥22

= sup
x:∥Rx∥2=1

∥URx∥2∞
∥URx∥22

= sup
y:∥y∥2=1

∥Uy∥2∞,

notice that for each i ∈ [n], we have ⟨Ui, y⟩2 ≤ ∥Ui∥22 = ℓi(U) = ℓi(A), which means that

µ(A) ≥ supx
∥Ax∥2∞
∥Ax∥22

. On the other hand, let j = argmaxiℓi(U), then let yT = Ui/∥Ui∥2, we
have ∥Uy∥2∞ ≥ ℓj(U), from which we have that µ(A) ≤ supx

∥Ax∥2∞
∥Ax∥22

.

(2) Since we have that
∑

i ℓi(A) = d, we can get that maxi ℓi(A) ≥ (
∑

i ℓi(A)) /n = d/n.
Consider the example where we stack n/d d × d identity matrix Id to form the matrix A.
That is,

A =


Id
Id
...
Id


We can see that A has orthogonal columns, after normalization we have that each row of A
has leverage score d/n.

(3) Suppose that A is a matrix that satisfies the condition in (2). Then we construct
the matrix B where B1 = A1 and Bi = −Ai for i ≥ 2. Then we have that for every x,
∥Ax∥2 = ∥Bx∥2 and ∥Ax∥∞ = ∥Bx∥∞, which means that µ(A) = µ(B) = d/n.

We next consider the matrix C = [A B]. Note that from part (1) we immediately have
µ(C) ≤ 1 as ∥Ax∥∞ ≤ ∥Ax∥2 for every x ∈ Rd. On the other hand, let x be the vector has
the form (y,−y) where AT

1 y ̸= 0. We then have (Cx)1 ̸= 0 while (Cx)i = 0 for i ≥ 2. This
means that µ(C) ≥ 1, from which we have that µ(C) = 1.

4) For a matrix C where C has orthonormal columns, note that we have that µ(C) =
maxi ∥Ci∥22. Back to our problem, from the assumption we have that all of the matrices
A,B,C have orthonormal columns, which means µ(A) = maxi ∥Ai∥22, µ(B) = maxi ∥Bi∥22, µ(C) =
maxi ∥Ci∥22. Since C = [A B], we have that

max
(
max

i
∥Ai∥22,max

i
∥Bi∥22

)
≤ max

i
∥Ci∥22 ≤ max

i
∥Ai∥22 +max

i
∥Bi∥22

which means that
max (µ(A), µ(B)) ≤ µ(C) ≤ µ(A) + µ(B)
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Problem 2 (1) Let A = UΣV be the singular value decomposition of A. Then we have
that

AR = A(I − VkV
T
k + VkΣ

−1
k V T

k )

= A− Ak + UkV
T
k

= UΣ′V.

where Σ′ =

[
Ik

Σ−k

]
is a diagonal matrix where all the diagonal entries are O(1) (from the

assumption we have that σk+1 = O(1)). From this we have that

∥ARx∥2 = Θ(1)∥x∥2 ,

which is what we need.
(2) Let A = UΣV T . Then we have for a x ∈ Rn where ∥x∥2 = 1

∥ARx∥22 = ∥UΣV TRx∥22 = ∥ΣV TRx∥22 =
∑
i

(ΣV TRx)2i

Let x = αz + βw, where ⟨z, w⟩ = 0, ∥w∥2 = 1, and α2 + β2 = 1. Then, for i = 1, we have

(ΣV TRx)1 = σ1(A)v
T
1 (I − zzT )βw + σ1(A)

1

λ
vT1 zz

T z

from the assumption that ⟨v1, z⟩ ≥ 1− 1/(10σ1(A)
2) and ∥a− b∥22 = ∥a∥22+ ∥b∥22− 2⟨a, b⟩ we

have that

∥vT1 − ⟨v1, z⟩zT∥22 = ∥v1∥22 + ⟨v1, z⟩2∥z∥22 − 2⟨v1, z⟩3 = O

(
1

σ1(A)2

)
from which we have that

|(ΣV TRx)1| = |σ1(A)v
T
1 (I − zzT )βw + σ1(A)

1

λ
vTi zz

T z|

≤ O(1) · |β|+Θ(1) · |α|.

Next, for i ≥ 2 we have

|(ΣV TRx)i| =
∣∣∣∣σi(A)v

T
i (I − zzT )βw + σi(A)

1

λ
vTi zz

T z

∣∣∣∣
=

∣∣∣∣σi(A)v
T
i βw + σi(A)

1

λ
⟨vi, z⟩α

∣∣∣∣
=

∣∣∣∣σi(A)⟨vi, w⟩β + σi(A)
1

λ
⟨vi, z⟩α

∣∣∣∣
≤ Θ(1) · (|⟨vi, w⟩||β|+ |⟨vi, z⟩||α|)
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Using the fact that (a+ b)2 ≤ 2(a2 + b2) we have

∥ARx∥22 =
∑
i

(ΣV TRx)2i

≤ O(1) · β2 +Θ(1) · α2 +
∑
i≥2

Θ(1) · (⟨vi, w⟩2β2 + ⟨vi, z⟩2α2)

= Θ(1).

We next consider the other direction. If |β| ≤ 2|α|, from the above we have

|(ΣV TRx)1| = |σ1(A)v
T
1 (I − zzT )βw + σ1(A)

1

λ
vTi zz

T z|

≥ 0.9 · |α| −O(1) · |β| ≥ Θ(1).

since α2 + β2 = 1, and on the other case |β| > 2|α|, from
∑

i⟨vi, z⟩2 =
∑

i⟨vi, w⟩2 = 1 and

|⟨v1, z⟩| > 1−O
(

1
σ1(A)2

)
, |⟨v1, w⟩| ≤ O

(
1

σ1(A)

)
we have that

∑
i

|(ΣV TRx)i|2 =
∑
i

∣∣∣∣σi(A)⟨vi, w⟩β + σi(A)
1

λ
⟨vi, z⟩α

∣∣∣∣2 ≥ Θ(1) · (β − α)2 ≥ Θ(1) .

from which we can get that in both cases, ∥ARx∥22 ≥ Θ(1), which is what we need.
(3) In each iteration of the gradient descent we need to compute RTAT (b−ARxi). Since

we have R = I− zzT + 1
λ
zzT , which means that we can compute Rxi in O(n) time, b−ARxi

in O(n) time, and then AT (b−ARxi) in nnz(A) time and finally RT (AT (b−ARxi)) in O(n)
time, from which we can get that the per-iteration time we can have is O(nnz(A) + n).

Problem 3 We define OPT as

OPT = min
rank−k A′

∥A′ − A∥2F .

We first consider the following optimization problem,

min
U1,··· ,Uk∈Rn

∥∥∥∥∥
k∑

i=1

Ui ⊗ V ∗
i ⊗W ∗

i − A

∥∥∥∥∥
2

F

,

it is equivalent to

min
U∈Rn×k

∥∥UZ1 − A1
∥∥2

F
,

where Z1 = ((V ∗)T ⊙(W ∗)T ). Notice that minU∈Rn×k ∥UZ1−A1∥2F = OPT and the optimum
solution of U is U∗. Let (R1)T ∈ Rs×n2

be a Count-Sketch matrix with s = poly(k/ε).
We next consider the following optimization problem,

min
U∈Rn×k

∥UZ1R
1 − A1R1∥2F .
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Let Û ∈ Rn×k denote the optimal solution to the above optimization problem. Then Û =
A1R1(Z1R

1)†. From the class we know that with probability at least 0.99 R1 is an affine
embedding, which means that

∥ÛZ1 − A1∥ ≤ (1 + ε) min
U∈Rn×k

∥∥UZ1 − A1
∥∥2

F
= (1 + ε)OPT,

which implies ∥∥∥∥∥
k∑

i=1

Ûi ⊗ V ∗
i ⊗W ∗

i − A

∥∥∥∥∥
2

F

≤ (1 + ε)OPT.

As our second step, we fix Û ∈ Rn×k and W ∗ ∈ Rn×k, and we convert tensor A into
matrix A2. Let Z2 = ((Û)T ⊙ (W ∗)T ). We consider the following objective function,

min
V ∈Rn×k

∥V Z2 − A2∥2F ,

for which the optimal cost is at most (1+ε)OPT. We sketch R2 on the right of the objective
function to obtain the new objective function,

min
V ∈Rn×k

∥V Z2R
2 − A2R

2∥2F .

Similarly we have that with probability at least 0.99 the solution V̂ = A2R2(Z2R
2)† satisfies

∥V̂ Z2 − A2∥2F ≤ (1 + ε) min
V ∈Rn×k

∥V Z2 − A2∥2F ≤ (1 + ε)2OPT,

which implies ∥∥∥∥∥
k∑

i=1

Ûi ⊗ V̂i ⊗W ∗
i − A

∥∥∥∥∥
2

F

≤ (1 + ϵ)2OPT.

As our third step, we fix the matrices Û ∈ Rn×k and V̂ ∈ Rn×k and let Z3 = ((Û)T⊙(V̂ )T ).
We consider the following objective function,

min
W∈Rn×k

∥WZ3 − A3∥2F ,

which has optimal cost at most (1 + ϵ)2OPT. We sketch R3 on the right of the objective
function to obtain a new objective function,

min
W∈Rn×k

∥WZ3R
3 − A3R3∥2F .

Similarly we have that with probability at least 0.99 we have the solution Ŵ = A3R3(Z3R
3)†

satisfies

∥V̂ Z2 − A2∥2F ≤ (1 + ε) min
V ∈Rn×k

∥V Z2 − A2∥2F ≤ (1 + ε)3OPT,
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which means that ∥∥∥∥∥
k∑

i=1

Ûi ⊗ V̂i ⊗ Ŵi − A

∥∥∥∥∥
2

F

≤ (1 + ϵ)2OPT.

Recall that we have Û ∈ Rn×k, V̂ = A2R2(Z2R
2)†, and Ŵ = A3R3(Z3R

3)†. This means
that

min
X1,X2,X3

∥∥∥∥∥
k∑

i=1

(A1R
1X1)i ⊗ (A2R

2X2)i ⊗ (A3R
3X3)i − A

∥∥∥∥∥
2

F

≤ (1 + ϵ)3OPT.

which is what we need.
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