
15-851 Algorithms for Big Data — Spring 2024

Problem Set 2
Due: Thursday, February 29, before class

Please see the following link for collaboration and other homework policies:
http://www.cs.cmu.edu/afs/cs/user/dwoodruf/www/teaching/15851-spring24/grading.

pdf

Problem 1: Matrix Coherence (16 points)
The coherence µ(A) of an n × d matrix A is defined to be maxi=1,...,n ℓi(A), where ℓi(A) is
the i-th leverage score of A.

1. Given an n× d matrix A with n ≥ d, prove that

µ(A) = sup
x

∥Ax∥2∞
∥Ax∥22

,

where recall that for a vector y ∈ Rn, we have ∥y∥∞ = maxni=1 |yi|.

2. For n ≥ d, argue that for any n × d matrix A with rank(A) = d, that µ(A) ≥ d/n.
Give an example n × d matrix A where µ(A) = d/n. Your example should work for
any d and n with n ≥ d and n is an integer multiple of d.

3. Given an n× d matrix A and an n× d matrix B, let C = [A,B], that is, we adjoin the
columns of B to those of A so that C is an n× 2d matrix. Assume n is strictly larger
than 2d and C is not equal to the all zeros matrix. Give an example pair of matrices
A and B for which µ(C) = 1 but µ(A) = d/n and µ(B) = d/n.

4. You are again given A and B as in the previous part, but now you are promised that
the columns of A and B are orthonormal, and that any column of A is perpendicular
to any column of B. Let C = [A,B] again, so that C is an n× 2d matrix with n > 2d
and C not equal to the all zeros matrix. Prove that

max(µ(A), µ(B)) ≤ µ(C) ≤ µ(A) + µ(B).

http://www.cs.cmu.edu/afs/cs/user/dwoodruf/www/teaching/15851-spring24/grading.pdf
http://www.cs.cmu.edu/afs/cs/user/dwoodruf/www/teaching/15851-spring24/grading.pdf

Problem 2: Low Rank Preconditioning (17 points)
In this problem you are given an n×nmatrix A with rank(A) = n, and would like to compute

an n×n matrix R so that κ(AR) = O(1), where κ(AR) = σ1(AR)
σn(AR)

is the condition number of

AR, and σi(AR) is the i-th singular value of AR. We will assume1 that σn(A) = 1. As we
saw in class, this is useful for ensuring the number of iterations of gradient descent for least
squares regression is small. Here though, A is a square matrix and so the computation in
class would be fairly slow. In this problem we will show how to use a low rank approximation
to precondition square matrices provided they satisfy certain properties.

1. Suppose σk+1(A) = O(σn(A)), but the top k singular values of A may be arbitrarily
large. Let Ak be the best rank-k approximation to A, i.e., the n × n matrix A for
which ∥A − Ak∥F is minimized. We can write Ak = UkΣkV

T
k where Uk, Vk ∈ Rn×k,

and Σk ∈ Rk×k. Argue that the n × n matrix R = I − VkV
T
k + VkΣ

−1
k V T

k is a good
preconditioner, that is, for all x we have

∥ARx∥2 = Θ(1)∥x∥2.

HINT: It may help to write A in its SVD. Also note that the column spans of A−Ak

and Ak are orthogonal.

2. Computing Ak exactly is expensive, so let us see how we can get a faster algorithm.
To simplify the problem, we will restrict to k = 1 in what follows. Suppose:

• We have a unit vector z for which ⟨v1, z⟩ ≥ 1− 1/(10σ1(A)
2), where v1 is the top

right singular vector of A.

• We have a number λ for which λ = σ1(A)± 1/10.

• σ2(A) = O(σn(A)).

Show that the n× n matrix R = I − zzT + z 1
λ1
zT is a good preconditioner, that is, for

all x we have
∥ARx∥2 = Θ(1)∥x∥2.

HINT: use the properties of z and λ above and try to directly compute this quantity.
It may help to write A in its SVD and write x = αz + βw where ⟨z, w⟩ = 0.

It is known how to find a unit vector v1 and corresponding value λ efficiently, assuming
σ1 > 2σ2. The running time is O(nnz(A) log n). The idea is to use the power method,
which you may have seen in an earlier class. For those who are interested, we encourage
you to read the solutions to problem 2 on problem set 2 here: http://www.cs.cmu.

edu/~dwoodruf/teaching/15859-fall22/index.html to get an idea how to find such
a z and v1.

3. In class, each iteration of gradient descent involved multiplying by R and then by
A, giving time O(nnz(A) + n2) in the case n = d. What is the per iteration time
complexity of using the preconditioner you found in the previous part?

1It is not hard to reduce to this case but we will not discuss it here.

2

http://www.cs.cmu.edu/~dwoodruf/teaching/15859-fall22/index.html
http://www.cs.cmu.edu/~dwoodruf/teaching/15859-fall22/index.html

Problem 3: Tensor Low Rank Approximation (17 points)

Given q vectors u1 ∈ Rn1 , u2 ∈ Rn2 , · · · , uq ∈ Rnq , we use u1 ⊗ u2 ⊗ · · · ⊗ uq to denote
an n1 × n2 × · · · × nq tensor such that, for each (j1, j2, · · · , jq) ∈ [n1]× [n2]× · · · × [nq],

(u1 ⊗ u2 ⊗ · · · ⊗ uq)j1,j2,··· ,jq = (u1)j1(u2)j2 · · · (uq)jq ,

where (ui)ji denotes the ji-th entry of vector ui.
An n × n × n tensor A is a 3-dimensional array where Ai,j,k ∈ R. The rank of a tensor

is the minimal integer k for which A =
∑k

i=1 u
i ⊗ vi ⊗ wi for vectors ui, vi, wi, each in Rn,

for each i = 1, . . . , k. For a tensor A, we can define ∥A∥F =
√∑

i,j,k A
2
i,j,k to be the natural

Tensor Column Row Tube

Figure 1: A 3rd order tensor contains n2 columns, n2 rows, and n2 tubes.

analogue of the Frobenius norm for matrices. In this problem, we would like to try to find
a rank-k tensor B for which

∥A−B∥2F ≤ (1 + ϵ)∥A− A∗∥2F , (1)

were A∗ is a rank-k tensor which minimizes2 ∥A − B∥2F over all rank-k tensors B. We can
write A∗ =

∑k
i=1 u

∗,i ⊗ v∗,i ⊗ w∗,i. Define U∗ to be the n × k matrix with columns u∗,i, for
i = 1, . . . , k. We similarly define V ∗ and W ∗.

A useful concept is the notion of a flattening of a tensor: there are three flattenings
denoted A1, A2, and A3, each in Rn×n2

. For (c, d) ∈ {1, 2, . . . , n} × {1, 2, . . . , n2}, write
d = d1n + d0, where d0, d1 ∈ {1, 2, . . . , n}. Define A1 ∈ Rn×n2

to be the matrix whose
(c, d)-th entry is Ac,d0,d1 . Define A

2 ∈ Rn×n2
to be the matrix whose (c, d)-th entry is Ad0,c,d1 .

Finally, define A3 ∈ Rn×n3
to be the matrix whose (c, d)-th entry is Ad0,d1,c. See Figure 2 for

an example.

2There is a subtle issue in showing such an A∗ exists. You can take this as given for this problem.

3

Figure 2: Flattening. We flatten a third order 4 × 4 × 4 tensor along the 1st dimension to
obtain a 4 × 16 matrix. The red blocks correspond to a column in the original third order
tensor, the blue blocks correspond to a row in the original third order tensor, and the green
blocks correspond to a tube in the original third order tensor.

With this notation, we have that the three flattenings of A∗
k are (1) U

∗ · ((V ∗)T ⊙ (W ∗)T),
(2) V ∗ · ((U∗)T ⊙ (W ∗)T), and (3) W ∗ · ((U∗)T ⊙ (V ∗)T), where for two k×n matrices E and
F , we define E ⊙ F to be the k × n2 matrix obtained whose (c, d)-th entry is Ec,d0 × Fc,d1 .

Let (R1)T , (R2)T , (R3)T be three independent CountSketch matrices, each with poly(k/ϵ)
columns. Prove that with probability at least 9/10, there exists a rank-k tensor B =∑k

i=1 u
i ⊗ vi ⊗ wi which satisfies (1) and for which (1) u1, . . . , uk are in the column span of

A1R1, (2) v1, . . . , vk are in the column span of A2R2, and (3) w1, . . . , wk are in the column
span of A3R3.

HINT: Try to generalize the argument we used in class for showing that for a matrix A,
the row span of SA contains a (1 + ϵ)-approximate rank-k space to the matrix low rank
approximation problem for A. You will want to fix the optimum A∗ for this argument and
consider a flattening of it. After doing this, you may need to apply the argument from
class twice more, where each application may depend on the conclusion from a previous
application and replace a certain part of A∗ with what you get from the previous part.

4

